Advertisement

Effectiveness and Safety of Extracorporeal Shockwave Myocardial Revascularization in Patients With Refractory Angina Pectoris and Heart Failure

Published:December 29, 2020DOI:https://doi.org/10.1016/j.amjcard.2020.12.065
      Extracorporeal shockwave myocardial revascularization (ESMR) is a therapy for refractory angina pectoris. Our aim was to assess the efficacy and safety of ESMR in the management of patients with stable coronary artery disease (CAD) and heart failure as well as its effects on inflammation and angiogenesis. In this single-arm prospective trial, we included 48 patients with CAD, myocardial ischemia assessed by radionuclide imaging, echocardiographic evidence of left ventricular systolic dysfunction and without revascularization options. Changes in angina grading score, myocardial perfusion, left ventricular ejection fraction, and six-minute walk test after ESMR therapy were used for efficacy assessment. Changes of inflammation and angiogenesis biomarkers were also evaluated. ESMR therapy was performed using a commercially available cardiac shockwave generator system (Cardiospec; Medispec). After 9 weeks of ESMR therapy, a significant improvement was found regarding the initial angina class, severity of ischemia, left ventricular ejection fraction, and six-minute walk test in most patients. No deleterious side effects after treatment were detected. Regarding biomarkers, endothelial progenitor cells and angiopoietin-3 were significantly increased whereas IL-18 and TGF-β were significantly decreased after ESMR in the total group. Notably, VEGF, IL-1ß, and lipoxin A4 levels were significantly increased only in patients with myocardial ischemia improvement. In conclusion, ESMR therapy is safe and effective in most but not all patients with CAD and heart failure. ESMR is associated with increased markers of angiogenesis and decreased markers of inflammation. Myocardial ischemia improvement after ESMR is associated with increased markers of angiogenesis and pro-resolving mediators.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Waltenberger J
        Chronic refractory angina pectoris: recent progress and remaining challenges.
        Eur Heart J. 2017; 38: 2556-2558
        • Nishida T
        • Shimokawa H
        • Oi K
        • Tatewaki H
        • Uwatoku T
        • Abe K
        • Matsumoto Y
        • Kajihara N
        • Eto M
        • Matsuda T
        • Yasui H
        • Takeshita A
        • Sunagawa K
        Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo.
        Circulation. 2004; 110: 3055-3061
        • Mariotto S
        • de Prati AC
        • Cavalieri E
        • Amelio E
        • Marlinghaus E
        • Suzuki H
        Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action.
        Curr Med Chem. 2009; 16: 2366-2372
        • Fu M
        • Sun CK
        • Lin YC
        • Wang CJ
        • Wu CJ
        • Ko SF
        • Chua S
        • Sheu JJ
        • Chiang CH
        • Shao PL
        • Leu S
        • Yip HK
        Extracorporeal shock wave therapy reverses ischemia-related left ventricular dysfunction and remodeling: molecular-cellular and functional assessment.
        PLoS One. 2011; 6: e24342
        • Čelutkienė J
        • Burneikaitė G
        • Shkolnik E
        • Jakutis G
        • Vajauskas D
        • Čerlinskaitė K
        • Zuozienė G
        • Petrauskienė B
        • Puronaitė R
        • Komiagienė R
        • Butkuvienė I
        • Steponėnienė R
        • Misiūra J
        • Laucevičius A
        The effect of cardiac shock wave therapy on myocardial function and perfusion in the randomized, triple-blind, sham-procedure controlled study.
        Cardiovasc Ultrasound. 2019; 17: 13
        • Schmid JP
        • Capoferri M
        • Wahl A
        • Eshtehardi P
        • Hess OM
        Cardiac shock wave therapy for chronic refractory angina pectoris. A prospective placebo-controlled randomized trial.
        Cardiovasc Ther. 2013; 31: e1-e6
        • Prasad M
        • Wan Ahmad WA
        • Sukmawan R
        • Magsombol EB
        • Cassar A
        • Vinshtok Y
        • Ismail MD
        • Mahmood Zuhdi AS
        • Locnen SA
        • Jimenez R
        • Callleja H
        • Lerman A
        Extracorporeal shockwave myocardial therapy is efficacious in improving symptoms in patients with refractory angina pectoris-a multicenter study.
        Coron Artery Dis. 2015; 26: 194-200
        • Burneikaitė G
        • Shkolnik E
        • Čelutkienė J
        • Zuozienė G
        • Butkuvienė I
        • Petrauskienė B
        • Šerpytis P
        • Laucevičius A
        • Lerman A
        Cardiac shock-wave therapy in the treatment of coronary artery disease: systematic review and meta-analysis.
        Cardiovasc Ultrasound. 2017; 15: 11
        • Cox J
        • Naylor CD
        The Canadian Cardiovascular Society grading scale for angina pectoris: is it time for refinements?.
        Ann InternMed. 1992; 117: 677-683
        • Zuoziene G
        • Leibowitz D
        • Celutkiene J
        • Burneikaite G
        • Ivaskeviciene L
        • Kalinauskas G
        • Maneikiene VV
        • Palionis D
        • Janusauskas V
        • Valeviciene N
        • Laucevicius A
        Multimodality imaging of myocardial revascularization using cardiac shock wave therapy.
        Int J Cardiol. 2015; 187: 229-230
        • Kikuchi Y
        • Ito K1
        • Shindo T
        • Hao K1
        • Shiroto T
        • Matsumoto Y
        • Takahashi J
        • Matsubara T
        • Yamada A
        • Ozaki Y
        • Hiroe M
        • Misumi K
        • Ota H
        • Takanami K
        • Hiraide T
        • Takase K
        • Tanji F
        • Tomata Y
        • Tsuji I
        • Shimokawa H
        A multicenter trial of extracorporeal cardiac shock wave therapy for refractory angina pectoris: report of the highly advanced medical treatment in Japan.
        Heart Vessels. 2019; 34: 104-113
        • Liu B
        • Zhang Y
        • Jia N
        • Lan M
        • Du L
        • Zhao D
        • He Q
        Study of the safety of extracorporeal cardiac shock wave therapy: observation of the ultrastructures in myocardial cells by transmission electron microscopy.
        J Cardiovasc Pharmacol Ther. 2018; 23: 79-88
        • Holfeld J
        • Tepeköylü C
        • Kozaryn R
        • Urbschat A
        • Zacharowski K
        • Grimm M
        • Paulus P
        Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-Like receptor 3.
        Inflammation. 2014; 37: 65-70
        • Zhang Y
        • Shen T
        • Liu B
        • Dai D
        • Cai J
        • Zhao C
        • Du L
        • Jia N
        • He Q
        Cardiac shock wave therapy attenuates cardiomyocyte apoptosis after acute myocardial infarction in rats.
        Cell Physiol Biochem. 2018; 49: 1734-1746
        • Hatanaka K
        • Ito K
        • Shindo T
        • Kagaya Y
        • Ogata T
        • Eguchi K
        • Kurosawa R
        • Shimokawa H
        Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.
        Am J Physiol Cell Physiol. 2016; 311: C378-C385
        • Cai HY
        • Li L
        • Guo T
        • Wang YU
        • Ma TK
        • Xiao JM
        • Zhao L
        • Fang Y
        • Yang P
        • Zhao HU
        Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells.
        Exp Ther Med. 2015; 10: 2410-2416
        • Yip HK
        • Chang LT
        • Sun CK
        • Youssef AA
        • Sheu JJ
        • Wang CJ
        Shock wave therapy applied to rat bone marrow-derived mononuclear cells enhances formation of cells stained positive for CD31 and vascular endothelial growth factor.
        Circ J. 2008; 72: 150-156
        • Aicher A
        • Heeschen C
        • Sasaki K
        • Urbich C
        • Zeiher AM
        • Dimmeler S
        Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia.
        Circulation. 2006; 114: 2823-2830
        • Minatoguchi S
        • Takemura G
        • Chen XH
        • Wang N
        • Uno Y
        • Koda M
        • Arai M
        • Misao Y
        • Lu C
        • Suzuki K
        • Goto K
        • Komada A
        • Takahashi T
        • Kosai K
        • Fujiwara T
        • Fujiwara H
        Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment.
        Circulation. 2004; 109: 2572-2580
        • Grunewald M
        • Avraham I
        • Dor Y
        • Bachar-Lustig E
        • Itin A
        • Jung S
        • Chimenti S
        • Landsman L
        • Abramovitch R
        • Keshet E
        VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells.
        Cell. 2006; 124: 175-189
        • Kagaya Y
        • Ito K
        • Takahashi J
        • Matsumoto Y
        • Shiroto T
        • Tsuburaya R
        • Kikuchi Y
        • Hao K
        • Nishimiya K
        • Shindo T
        • Ogata T
        • Kurosawa R
        • Eguchi K
        • Monma Y
        • Ichijo S
        • Hatanaka K
        • Miyata S
        • Shimokawa H
        Low-energy cardiac shockwave therapy to suppress left ventricular remodeling in patients with acute myocardial infarction: a first-in-human study.
        Coron Artery Dis. 2018; 29: 294-300
        • Tanaka T
        • Kanai H
        • Sekiguchi K
        • Aihara Y
        • Yokoyama T
        • Arai M
        • Kanda T
        • Nagai R
        • Kurabayashi M
        Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes.
        J Mol Cell Cardiol. 2000; 32: 1955-1967
        • Kain V
        • Ingle KA
        • Colas RA
        • Dalli J
        • Prabhu SD
        • Serhan CN
        • Joshi M
        • Halade GV
        Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function.
        J Mol Cell Cardiol. 2015; 84: 24-35
        • Kain V
        • Liu F
        • Kozlovskaya V
        • Ingle KA
        • Bolisetty S
        • Agarwal A
        • Khedkar S
        • Prabhu SD
        • Kharlampieva E
        • Halade GV
        Resolutionagonist 15-epi-lipoxin A4 programs early activation of resolving phase in post-myocardial infarction healing.
        Sci Rep. 2017; 7: 9999
        • Fahey E
        • Doyle SL
        IL-1 family cytokine regulation of vascular permeability and angiogenesis.
        Front Immunol. 2019; 10: 1426
        • Jung YJ
        • Isaacs JS
        • Lee S
        • Trepel J
        • Neckers L
        IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis.
        FASEB J. 2003; 17: 2115-2117
        • Alexánderson E
        • Mannting F
        • Gómez-Martín D
        • Fermon S
        • Meave A
        Technetium-99m-Sestamibi SPECT myocardial perfusion imaging in patients with complete left bundle branch block.
        Arch Med Res. 2004; 35: 150-156
        • Dorbala S
        • Ananthasubramaniam K
        • Armstrong IS
        • Chareonthaitawee P
        • DePuey EG
        • Einstein AJ
        • Gropler RJ
        • Holly TA
        • Mahmarian JJ
        • Park MA
        • Polk DM
        • Russell 3rd, R
        • Slomka PJ
        • Thompson RC
        • Wells RG
        Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation.
        J Nucl Cardiol. 2018; 25: 1784-1846
        • Schmidt-Lucke C
        • Fichtlscherer S
        • Aicher A
        • Tschöpe C
        • Schultheiss HP
        • Zeiher AM
        • Dimmeler S
        Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol.
        PLoS One. 2010; 5: e13790
        • Slikkerveer J
        • de Boer K
        • Robbers LF
        • van Rossum AC
        • Kamp O
        Evaluation of extracorporeal shock wave therapy for refractory angina pectoris with quantitative analysis using cardiac magnetic resonance imaging: a short communication.
        Neth Heart J. 2016; 24: 319-325