Advertisement

Sodium Glucose Co-transporter 2 Inhibitors and Heart Failure

Published:September 09, 2019DOI:https://doi.org/10.1016/j.amjcard.2019.08.038
      Sodium-glucose co-transporter 2 (SGLT2) receptors are primarily located in the proximal convoluted tubule of the nephron. These receptors are responsible for almost 90% to 95% of tubular reabsorption of the glucose in the nephron. In patients with diabetes mellitus, due to upregulation of SGLT2 receptors, glucose reabsorption is further increased. The Food and Drug Administration approved SGLT2 inhibitors, such as canagliflozin, empagliflozin, dapagliflozin, and ertugliflozin, for the treatment of type 2 diabetes. In addition to their positive effect on blood glucose, additional cardioprotective and renoprotective functions have been demonstrated in major trials such as EMPA-REG OUTCOME, CANVAS, DECLARE-TIMI-58, and CREDENCE. Unlike other antihyperglycemic drugs, reduction in hospitalization for heart failure (HF) was also seen as a class effect with this group, mechanisms of which are probably multifactorial. Subgroup analysis from these major trials indicated a reduction in progression of nephropathy and HF readmission with SGLT2 inhibitors. Although this unique property of canagliflozin was further analyzed in the CREDENCE trial, similar trials for empagliflozin (EMPERIAL-Reduced and EMPERIAL-Preserved) and dapagliflozin (DAPA-HF) are currently underway. Recently released phase III results from DAPA-HF trial indicate that dapagliflozin shows significant reduction in death due to cardiovascular causes and hospitalization in HF compared with the placebo, in both diabetics and nondiabetics. In this review article, the authors attempt to explore the possible underlying molecular mechanisms and data from existing trials pertaining to the HF related outcomes associated with SGLT2 inhibitors.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grundy SM
        • Benjamin IJ
        • Burke GL
        • Chait A
        • Eckel RH
        • Howard BV
        • Mitch W
        • Smith Jr, SC
        • Sowers JR
        Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association.
        Circulation. 1999; 100: 1134-1146
      1. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants.
        Lancet. 2016; 387: 1513-1530
        • Fonarow GC
        Diabetes medications and heart failure.
        Circulation. 2014; 130: 1565-1567
        • Azoulay L
        • Suissa S
        Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies.
        Diabetes Care. 2017; 40: 706-714
        • Graham DJ
        • Ouellet-Hellstrom R
        • MaCurdy TE
        • Ali F
        • Sholley C
        • Worrall C
        • Kelman JA
        Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone.
        JAMA. 2010; 304: 411-418
        • Mentz RJ
        • Thompson VP
        • Aguilar D
        • Choi J
        • Gustavson SM
        • Iqbal N
        • Kong AP
        • Öhman P
        • Sattar N
        • Scott RS
        • Wong YW
        • Holman RR
        • Hernandez AF
        Effects of once-weekly exenatide on clinical outcomes in patients with preexisting cardiovascular disease.
        Circulation. 2018; 138: 2576-2578
        • Scirica BM
        • Braunwald E
        • Raz I
        • Cavender MA
        • Morrow DA
        • Jarolim P
        • Udell JA
        • Mosenzon O
        • Im K
        • Umez-Eronini AA
        • Pollack PS
        • Hirshberg B
        • Frederich R
        • Lewis BS
        • McGuire DK
        • Davidson J
        • Steg PG
        • Bhatt DL
        Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial.
        Circulation. 2014; 130: 1579-1588
        • Perreault L
        EMPA-REG OUTCOME: the endocrinologist's point of view.
        Am J Med. 2017; 130: 51-56
        • Zou H
        • Zhou B
        • Xu G
        SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease.
        Cardiovasc Diabetol. 2017; 16: 65
        • Hsia DS
        • Grove O
        • Cefalu WT
        An update on SGLT2 inhibitors for the treatment of diabetes mellitus.
        Curr Opin Endocrinol Diabetes Obes. 2017; 24: 73-79
        • Cherney DZ
        • Perkins BA
        • Soleymanlou N
        • Maione M
        • Lai V
        • Lee A
        • Fagan NM
        • Woerle HJ
        • Johansen OE
        • Broedl UC
        • von Eynatten M
        Renal hemodynamic effect of Sodium–glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.
        Circulation. 2014; 129: 587-597
        • Panchapakesan U
        • Pegg K
        • Gross S
        • Komala MG
        • Mudaliar H
        • Forbes J
        • Pollock C
        • Mather A
        Effects of SGLT2 inhibition in human kidney proximal tubular cells–renoprotection in diabetic nephropathy?.
        PLoS ONE. 2013; 8: e54442
        • Briasoulis A
        • Al Dhaybi O
        • Bakris GL
        SGLT2 inhibitors and mechanisms of hypertension.
        Curr Cardiol Rep. 2018; 20: 1
        • Vallon V
        • Blantz RC
        • Thomson S
        Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view.
        J Am Soc Nephrol. 2003; 14: 530-537
        • Yagi S
        • Hirata Y
        • Ise T
        • Kusunose K
        • Yamada H
        • Fukuda D
        • Salim HM
        • Maimaituxun G
        • Nishio S
        • Takagawa Y
        • Hama S
        • Matsuura T
        • Yamaguchi K
        • Tobiume T
        • Soeki T
        • Wakatsuki T
        • Aihara KI
        • Akaike M
        • Shimabukuro M
        • Sata M
        Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus.
        Diabetol Metab Syndr. 2017; 9: 78
        • Di Franco A
        • Cantini G
        • Tani A
        • Coppini R
        • Zecchi-Orlandini S
        • Raimondi L
        • Luconi M
        • Mannucci E
        Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target.
        Int J Cardiol. 2017; 243: 86-90
        • Kates AM
        • Herrero P
        • Dence C
        • Soto P
        • Srinivasan M
        • Delano DG
        • Ehsani A
        • Gropler RJ
        Impact of aging on substrate metabolism by the human heart.
        J Am Coll Cardiol. 2003; 41: 293-299
        • Habibi J
        • Aroor AR
        • Sowers JR
        • Jia G
        • Hayden MR
        • Garro M
        • Barron B
        • Mayoux E
        • Rector RS
        • Whaley-Connell A
        • DeMarco VG
        Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes.
        Cardiovasc Diabetol. 2017; 16: 9
        • Hallow KM
        • Helmlinger G
        • Greasley PJ
        • McMurray JJV
        • Boulton DW
        Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis.
        Diabetes Obesity Metab. 2018; 20: 479-487
        • Zhou Y
        • Wu W
        The sodium-glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway.
        Cell Physiol Biochem. 2017; 41: 2503-2512
        • Hammoudi N
        • Jeong D
        • Singh R
        • Farhat A
        • Komajda M
        • Mayoux E
        • Hajjar R
        • Lebeche D
        Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes.
        Cardiovasc Drugs Ther. 2017; 31: 233-246
        • Joubert M
        • Jagu B
        • Montaigne D
        • Marechal X
        • Tesse A
        • Ayer A
        • Dollet L
        • Le May C
        • Toumaniantz G
        • Manrique A
        • Charpentier F
        • Staels B
        • Magré J
        • Cariou B
        • Prieur X
        The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model.
        Diabetes. 2017; 66: 1030-1040
        • Ye Y
        • Bajaj M
        • Yang HC
        • Perez-Polo JR
        • Birnbaum Y
        SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with Saxagliptin, a DPP4 inhibitor.
        Cardiovasc Drugs Ther. 2017; 31: 119-132
        • Terasaki M
        • Hiromura M
        • Mori Y
        • Kohashi K
        • Nagashima M
        • Kushima H
        • Watanabe T
        • Hirano T
        Amelioration of hyperglycemia with a sodium-glucose cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice.
        PLoS One. 2015; 10e0143396
        • Leng W
        • Ouyang X
        • Lei X
        • Wu M
        • Chen L
        • Wu Q
        • Deng W
        • Liang Z
        The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE(−/−) mice.
        Mediators Inflamm. 2016; 2016e6305735
        • Zinman B
        • Wanner C
        • Lachin JM
        • Fitchett D
        • Bluhmki E
        • Hantel S
        • Mattheus M
        • Devins T
        • Johansen OE
        • Woerle HJ
        • Broedl UC
        • Inzucchi SE
        • EMPA-REG OUTCOME Investigators
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Fitchett D
        • Zinman B
        • Wanner C
        • Lachin JM
        • Hantel S
        • Salsali A
        • Johansen OE
        • Woerle HJ
        • Broedl UC
        • Inzucchi SE
        • EMPA-REG OUTCOME® trial investigators
        Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial.
        Eur Heart J. 2016; 37: 1526-1534
        • Fitchett D
        • Inzucchi SE
        • Cannon CP
        • McGuire DK
        • Scirica BM
        • Johansen OE
        • Sambevski S
        • Kaspers S
        • Pfarr E
        • George JT
        • Zinman B
        Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME Trial.
        Circulation. 2019; 139: 1384-1395
        • Butler J
        • Zannad F
        • Fitchett D
        • Zinman B
        • Koitka-Weber A
        • von Eynatten M
        • Zwiener I
        • George J
        • Brueckmann M
        • Cheung AK
        • Wanner C
        Empagliflozin improves kidney outcomes in patients with or without heart failure.
        Circ Heart Fail. 2019; 12e005875
        • Abraham WT
        • Ponikowski P
        • Brueckmann M
        • Zeller C
        • Macesic H
        • Peil B
        • Brun M
        • Ustyugova A
        • Jamal W
        • Salsali A
        • Lindenfeld J
        • Anker SD
        Rationale and design of the EMPERIAL-Preserved and EMPERIAL-Reduced trials of empagliflozin in patients with chronic heart failure.
        Eur J Heart Fail. 2019; 21: 932-942
        • Neal B
        • Perkovic V
        • Mahaffey KW
        • de Zeeuw D
        • Fulcher G
        • Erondu N
        • Shaw W
        • Law G
        • Desai M
        • Matthews DR
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Rådholm K
        • Figtree G
        • Perkovic V
        • Solomon SD
        • Mahaffey KW
        • de Zeeuw D
        • Fulcher G
        • Barrett TD
        • Shaw W
        • Desai M
        • Matthews DR
        • Neal B
        Canagliflozin and heart failure in type 2 diabetes mellitus.
        Circulation. 2018; 138: 458-468
        • Perkovic V
        • Jardine MJ
        • Neal B
        • Bompoint S
        • Heerspink HJL
        • Charytan DM
        • Edwards R
        • Agarwal R
        • Bakris G
        • Bull S
        • Cannon CP
        • Capuano G
        • Chu PL
        • de Zeeuw D
        • Greene T
        • Levin A
        • Pollock C
        • Wheeler DC
        • Yavin Y
        • Zhang H
        • Zinman B
        • Meininger G
        • Brenner BM
        • Mahaffey KW
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Perkovic V
        • Jardine MJ
        • Neal B
        • Bompoint S
        • Heerspink HJL
        • Charytan DM
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Wiviott SD
        • Raz I
        • Bonaca MP
        • Mosenzon O
        • Kato ET
        • Cahn A
        • Silverman MG
        • Zelniker TA
        • Kuder JF
        • Murphy SA
        • Bhatt DL
        • Leiter LA
        • McGuire DK
        • Wilding JPH
        • Ruff CT
        • Gause-Nilsson IAM
        • Fredriksson M
        • Johansson PA
        • Langkilde AM
        • Sabatine MS
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Kato ET
        • Silverman MG
        • Mosenzon O
        • Zelniker TA
        • Cahn A
        • Furtado RHM
        • Kuder J
        • Murphy SA
        • Bhatt DL
        • Leiter LA
        • McGuire DK
        • Wilding JPH
        • Bonaca MP
        • Ruff CT
        • Desai AS
        • Goto S
        • Johansson PA
        • Gause-Nilsson I
        • Johanson P
        • Langkilde AM
        • Raz I
        • Sabatine MS
        • Wiviott SD
        Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus.
        Circulation. 2019; 139: 2528-2536
        • Mosenzon O
        • Wiviott SD
        • Cahn A
        • Rozenberg A
        • Yanuv I
        • Goodrich EL
        • et al.
        Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.
        Lancet Diabetes Endocrinol. 2019; 7: 606-617
        • McMurray JJV
        • DeMets DL
        • Inzucchi SE
        • Kober L
        • Kosiborod MN
        • Langkilde AM
        • et al.
        A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF).
        Eur J Heart Fail. 2019; 21: 665-675
        • Puckrin R
        • Saltiel MP
        • Reynier P
        • Azoulay L
        • Yu OHY
        • Filion KB
        SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials.
        Acta Diabetol. 2018; 55: 503-514
        • Erondu N
        • Desai M
        • Ways K
        • Meininger G
        Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program.
        Diabetes Care. 2015; 38: 1680-1686