Advertisement

Interrelations Between Hypertension and Electrocardiographic Left Ventricular Hypertrophy and Their Associations With Cardiovascular Mortality

Published:October 18, 2018DOI:https://doi.org/10.1016/j.amjcard.2018.10.006
      Electrocardiogram (ECG) is the most common method for assessment of left ventricular hypertrophy (LVH) in contemporary clinical trials. However, our understanding of the relation between hypertension and LVH is based on studies used imaging to ascertain LVH. To fill this gap in knowledge, we examined the interrelationships between hypertension, ECG-LVH and cardiovascular disease (CVD) mortality in 6,105 patients free of CVD who were followed for 14.0 years (median). The was an exponentianl ECG-LVH prevalence rates (2.40%, 4.45%, 5.75%, 8.51%, 14.38%) were exponentially increases as systolic blood pressure increases (<120 mm Hg, 120 to 129 mm Hg, 130 to 139 mm Hg, 140 to 159 mm Hg, >160 mm Hg, respectively); trend p value <0.001. Hypertension was associated with more than double the risk of ECG-LVH (odds ratio (95% confidence interval [CI]) 2.45 [1.83, 3.30]), and each standard-deviation increase in systolic blood pressure (19 mm Hg) was associated with 49% increased odds of ECG-LVH (odds ratio [95% CI] 1.49 [1.38, 1.61]). During follow-up, 733 CVD-deaths occurred. In separate Cox models, both ECG-LVH and hypertension were associated with CVD mortality (hazard ratio [95% CI] 1.39 [1.07, 1.81] and 1.39 [1.18, 1.62], respectively). However, when ECG-LVH and hypertension were entered together in the same model, the risk of CVD mortality was essentially unchanged for hypertension after adjusting for ECG-LVH, but markedly attenuated for ECG-LVH after adjusting for hypertension. In conclusion, the relation between hypertension and ECG-LVH follows a similar pattern to that reported in literature for imaging-LVH which provides support for the current practice of using ECG for assessment of LVH in contemporary hypertension clinical trials. The inability of ECG-LVH to explain the association between hypertension and CVD mortality suggests that LVH is only one of many factors by which hypertension exerts its impact on CVD.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lim S.S.
        • Vos T.
        • Flaxman A.D.
        • Danaei G.
        • Shibuya K.
        • Adair-Rohani H.
        • Amann M.
        • Anderson H.R.
        • Andrews K.G.
        • Aryee M.
        • Atkinson C.
        • Bacchus L.J.
        • Bahalim A.N.
        • Balakrishnan K.
        • Balmes J.
        • Barker-Collo S.
        • Baxter A.
        • Bell M.L.
        • Blore J.D.
        • Blyth F.
        • Bonner C.
        • Borges G.
        • Bourne R.
        • Boussinesq M.
        • Brauer M.
        • Brooks P.
        • Bruce N.G.
        • Brunekreef B.
        • Bryan-Hancock C.
        • Bucello C.
        • Buchbinder R.
        • Bull F.
        • Burnett R.T.
        • Byers T.E.
        • Calabria B.
        • Carapetis J.
        • Carnahan E.
        • Chafe Z.
        • Charlson F.
        • Chen H.
        • Chen J.S.
        • Cheng A.T.
        • Child J.C.
        • Cohen A.
        • Colson K.E.
        • Cowie B.C.
        • Darby S.
        • Darling S.
        • Davis A.
        • Degenhardt L.
        • Dentener F.
        • Des Jarlais D.C.
        • Devries K.
        • Dherani M.
        • Ding E.L.
        • Dorsey E.R.
        • Driscoll T.
        • Edmond K.
        • Ali S.E.
        • Engell R.E.
        • Erwin P.J.
        • Fahimi S.
        • Falder G.
        • Farzadfar F.
        • Ferrari A.
        • Finucane M.M.
        • Flaxman S.
        • Fowkes F.G.
        • Freedman G.
        • Freeman M.K.
        • Gakidou E.
        • Ghosh S.
        • Giovannucci E.
        • Gmel G.
        • Graham K.
        • Grainger R.
        • Grant B.
        • Gunnell D.
        • Gutierrez H.R.
        • Hall W.
        • Hoek H.W.
        • Hogan A.
        • Hosgood 3rd, H.D.
        • Hoy D.
        • Hu H.
        • Hubbell B.J.
        • Hutchings S.J.
        • Ibeanusi S.E.
        • Jacklyn G.L.
        • Jasrasaria R.
        • Jonas J.B.
        • Kan H,Kanis J.A.
        • Kassebaum N.
        • Kawakami N.
        • Khang Y.H.
        • Khatibzadeh S.
        • Khoo J.P.
        • Kok C.
        • Laden F.
        • Lalloo R.
        • Lan Q.
        • Lathlean T.
        • Leasher J.L.
        • Leigh J.
        • Li Y.
        • Lin J.K.
        • Lipshultz S.E.
        • London S.
        • Lozano R.
        • Lu Y.
        • Mak J.
        • Malekzadeh R.
        • Mallinger L.
        • Marcenes W.
        • March L.
        • Marks R.
        • Martin R.
        • McGale P.
        • McGrath J.
        • Mehta S.
        • Mensah G.A.
        • Merriman T.R.
        • Micha R.
        • Michaud C.
        • Mishra V.
        • Mohd Hanafiah K.
        • Mokdad A.A.
        • Morawska L.
        • Mozaffarian D.
        • Murphy T.
        • Naghavi M.
        • Neal B.
        • Nelson P.K.
        • Nolla J.M.
        • Norman R.
        • Olives C.
        • Omer S.B.
        • Orchard J.
        • Osborne R.
        • Ostro B.
        • Page A.
        • Pandey K.D.
        • Parry C.D.
        • Passmore E.
        • Patra J.
        • Pearce N.
        • Pelizzari P.M.
        • Petzold M.
        • Phillips M.R.
        • Pope D.
        • Pope 3rd, C.A.
        • Powles J,Rao M.
        • Razavi H.
        • Rehfuess E.A.
        • Rehm J.T.
        • Ritz B.
        • Rivara F.P.
        • Roberts T.
        • Robinson C.
        • Rodriguez-Portales J.A.
        • Romieu I.
        • Room R.
        • Rosenfeld L.C.
        • Roy A.
        • Rushton L.
        • Salomon J.A.
        • Sampson U.
        • Sanchez-Riera L.
        • Sanman E.
        • Sapkota A.
        • Seedat S.
        • Shi P.
        • Shield K.
        • Shivakoti R.
        • Singh G.M.
        • Sleet D.A.
        • Smith E.
        • Smith K.R.
        • Stapelberg N.J.
        • Steenland K.
        • Stöckl H.
        • Stovner L.J.
        • Straif K.
        • Straney L.
        • Thurston G.D.
        • Tran J.H.
        • Van Dingenen R.
        • van Donkelaar A.
        • Veerman J.L.
        • Vijayakumar L.
        • Weintraub R.
        • Weissman M.M.
        • White R.A.
        • Whiteford H.
        • Wiersma S.T.
        • Wilkinson J.D.
        • Williams H.C.
        • Williams W.
        • Wilson N.
        • Woolf A.D.
        • Yip P.
        • Zielinski J.M.
        • Lopez A.D.
        • Murray C.J.
        • Ezzati M.
        • AlMazroa M.A.
        • Memish Z.A.
        A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.
        Lancet. 2012; 380: 2224-2260
        • Forouzanfar M.H.
        • Liu P.
        • Roth G.A.
        • Ng M.
        • Biryukov S.
        • Marczak L.
        • Alexander L.
        • Estep K.
        • Hassen Abate K.
        • Akinyemiju T.F.
        • Ali R.
        • Alvis-Guzman N.
        • Azzopardi P.
        • Banerjee A.
        • Bärnighausen T.
        • Basu A.
        • Bekele T.
        • Bennett D.A.
        • Biadgilign S.
        • Catalá-López F.
        • Feigin V.L.
        • Fernandes J.C.
        • Fischer F.
        • Gebru A.A.
        • Gona P.
        • Gupta R.
        • Hankey G.J.
        • Jonas J.B.
        • Judd S.E.
        • Khang Y.H.
        • Khosravi A.
        • Kim Y.J.
        • Kimokoti R.W.
        • Kokubo Y.
        • Kolte D.
        • Lopez A.
        • Lotufo P.A.
        • Malekzadeh R.
        • Melaku Y.A.
        • Mensah G.A.
        • Misganaw A.
        • Mokdad A.H.
        • Moran A.E.
        • Nawaz H.
        • Neal B.
        • Ngalesoni F.N.
        • Ohkubo T.
        • Pourmalek F.
        • Rafay A.
        • Rai R.K.
        • Rojas-Rueda D.
        • Sampson U.K.
        • Santos I.S.
        • Sawhney M.
        • Schutte A.E.
        • Sepanlou S.G.
        • Shifa G.T.
        • Shiue I.
        • Tedla B.A.
        • Thrift A.G.
        • Tonelli M.
        • Truelsen T.
        • Tsilimparis N.
        • Ukwaja K.N.
        • Uthman O.A.
        • Vasankari T.
        • Venketasubramanian N.
        • Vlassov V.V.
        • Vos T.
        • Westerman R.
        • Yan L.L.
        • Yano Y.
        • Yonemoto N.
        • Zaki M.E.
        • Murray C.J.
        Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015.
        JAMA. 2017; 317: 165-182
        • Lewington S.
        • Clarke R.
        • Qizilbash N.
        • Peto R.
        • Collins R.
        • Prospective Studies Collaboration
        Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.
        Lancet. 2002; 360: 1903-1913
        • Cuspidi C.
        • Sala C.
        • Negri F.
        • Mancia G.
        • Morganti A.
        • Italian Society of Hypertension
        Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies.
        J Hum Hypertens. 2012; 26: 343-349
        • Katholi R.E.
        • Couri D.M.
        Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications.
        Int J Hypertens. 2011; 2011495349
        • Levy D.
        • Anderson K.M.
        • Savage D.D.
        • Kannel W.B.
        • Christiansen J.C.
        • Castelli W.P.
        Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study.
        Ann Intern Med. 1988; 108: 7-13
        • Savage D.D.
        • Levy D.
        • Dannenberg A.L.
        • Garrison R.J.
        • Castelli W.P.
        Association of echocardiographic left ventricular mass with body size, blood pressure and physical activity (the Framingham Study).
        Am J Cardiol. 1990; 65: 371-376
        • Hammond I.W.
        • Devereux R.B.
        • Alderman M.H.
        • Lutas E.M.
        • Spitzer M.C.
        • Crowley J.S.
        • Laragh J.H.
        The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension.
        J Am Coll Cardiol. 1986; 7: 639-650
        • Lauer M.S.
        • Anderson K.M.
        • Levy D.
        Influence of contemporary versus 30-year blood pressure levels on left ventricular mass and geometry: the Framingham Heart Study.
        J Am Coll Cardiol. 1991; 18: 1287-1294
        • Soliman E.Z.
        • Ambrosius W.T.
        • Cushman W.C.
        • Zhang Z.M.
        • Bates J.T.
        • Neyra J.A.
        • Carson T.Y.
        • Tamariz L.
        • Ghazi L.
        • Cho M.E.
        • Shapiro B.P.
        • He J.
        • Fine L.J.
        • Lewis C.E.
        • SPRINT Research Study Group
        Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension: SPRINT (Systolic Blood Pressure Intervention Trial).
        Circulation. 2017; 136: 440-450
        • Soliman E.Z.
        • Byington R.P.
        • Bigger J.T.
        • Evans G.
        • Okin P.M.
        • Goff Jr, D.C.
        • Chen H
        Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with diabetes mellitus: action to control cardiovascular risk in diabetes blood pressure trial.
        Hypertension. 2015; 66: 1123-1129
        • Ernst M.E.
        • Neaton J.D.
        • Grimm Jr, R.H.
        • Collins G.
        • Thomas W.
        • Soliman E.Z.
        • Prineas R.J.
        • Multiple Risk Factor Intervention Trial Research Group
        Long-term effects of chlorthalidone versus hydrochlorothiazide on electrocardiographic left ventricular hypertrophy in the multiple risk factor intervention trial.
        Hypertension. 2011; 58: 1001-1007
        • Okin P.M.
        • Devereux R.B.
        • Jern S.
        • Kjeldsen S.E.
        • Julius S.
        • Nieminen M.S.
        • Snapinn S.
        • Harris K.E.
        • Aurup P.
        • Edelman J.M.
        • Wedel H.
        • Lindholm L.H.
        • Dahlöf B.
        • LIFE Study Investigators
        Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events.
        JAMA. 2004; 292: 2343-2349
        • Brinkley T.E.
        • Anderson A.
        • Soliman E.Z.
        • Bertoni A.G.
        • Greenway F.
        • Knowler W.C.
        • Glasser S.P.
        • Horton E.S.
        • Espeland M.A.
        • Look AHEAD Research Group
        Long-term effects of an intensive lifestyle intervention on electrocardiographic criteria for left ventricular hypertrophy: the look AHEAD trial.
        Am J Hypertens. 2018; ([Epub ahead of print] PubMed PMID: 29324968)https://doi.org/10.1093/ajh/hpy004
        • Bang C.N.
        • Soliman E.Z.
        • Simpson L.M.
        • Davis B.R.
        • Devereux R.B.
        • Okin P.M.
        • ALLHAT Collaborative Research Group
        Electrocardiographic left ventricular hypertrophy predicts cardiovascular morbidity and mortality in hypertensive patients: the ALLHAT study.
        Am J Hypertens. 2017; 30: 914-922
        • Ernst M.E.
        • Davis B.R.
        • Soliman E.Z.
        • Prineas R.J.
        • Okin P.M.
        • Ghosh A.
        • Cushman W.C.
        • Einhorn P.T.
        • Oparil S.
        • Grimm Jr, R.H.
        • ALLHAT Collaborative Research Group
        Electrocardiographic measures of left ventricular hypertrophy in the antihypertensive and lipid-lowering treatment to prevent heart attack trial.
        J Am Soc Hypertens. 2016; 10 (e9): 930-938
        • Rautaharju P.M.
        • Soliman E.Z.
        Electrocardiographic left ventricular hypertrophy and the risk of adverse cardiovascular events: a critical appraisal.
        J Electrocardiol. 2014; 47: 649-654
        • Bacharova L.
        • Chen H.
        • Estes E.H.
        • Mateasik A.
        • Bluemke D.A.
        • Lima J.A.
        • Burke G.L.
        • Soliman E.Z.
        Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging.
        Am J Cardiol. 2015; 115: 515-522
        • Bacharova L.
        • Estes H.E.
        • Schocken D.D.
        • Ugander M.
        • Soliman E.Z.
        • Hill J.A.
        • Bang L.E.
        • Schlegel T.T.
        The 4th Report of the working group on ECG diagnosis of left ventricular hypertrophy.
        J Electrocardiol. 2017; 50: 11-15
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • Casey Jr, DE
        • Collins K.J.
        • Dennison Himmelfarb C.
        • DePalma S.M.
        • Gidding S.
        • Jamerson K.A.
        • Jones D.W.
        • MacLaughlin E.J.
        • Muntner P.
        • Ovbiagele B.
        • Smith Jr, S.C.
        • Spencer C.C.
        • Stafford R.S.
        • Taler S.J.
        • Thomas R.J.
        • Williams Sr, K.A.
        • Williamson J.D.
        • Wright Jr, JT
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        Hypertension. 2018; 7: e13-e115
        • Devereux R.B.
        • Pickering T.G.
        • Harshfield G.A.
        • Kleinert H.D.
        • Denby L.
        • Clark L.
        • Pregibon D.
        • Jason M.
        • Kleiner B.
        • Borer J.S.
        • Laragh J.H.
        Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress.
        Circulation. 1983; 68: 470-476
        • Devereux R.B.
        • Savage D.D.
        • Sachs I.
        • Laragh J.H.
        Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension.
        Am J Cardiol. 1983; 51 (1): 171-176
        • Drayer J.I.
        • Weber M.A.
        • DeYoung J.L.
        BP as a determinant of cardiac left ventricular muscle mass.
        Arch Intern Med. 1983; 143: 90-92
        • Devereux R.B.
        • Casale P.N.
        • Wallerson D.C.
        • Kligfield P.
        • Hammond I.W.
        • Leibson P.R.
        • Campo E.
        • Alonso D.R.
        • Laragh J.H.
        Cost-effectiveness of echocardiography for detection of left ventricular hypertrophy in patients with systemic hypertension.
        Hypertension. 1987; 9 (II-69-11-76)
        • Nguyen T.
        • Waits G.
        • Soliman E.Z.
        The role of resting electrocardiogram in screening for primary prevention of cardiovascular diseases in high-risk groups.
        Curr Cardiovasc Risk Rep. 2018; 12: 9https://doi.org/10.1007/s12170-018-0572-y
        • Gosse P.
        • Ansoborlo P.
        • Jullien V.V.
        • Lemetayer P.
        • Clementy J.
        Ambulatory blood pressure and left ventricular hypertrophy.
        Blood Press Monit. 1997; 2: 70-74
        • Gradman A.H.
        • Alfayoumi F.
        From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease.
        Prog Cardiovasc Dis. 2006; 48: 326-341
        • Oseni A.O.
        • Qureshi W.T.
        • Almahmoud M.F.
        • Bertoni A.G.
        • Bluemke D.A.
        • Hundley W.G.
        • Lima J.A.
        • Herrington D.M.
        • Soliman E.Z.
        Left ventricular hypertrophy by ECG versus cardiac MRI as a predictor for heart failure.
        Heart. 2017; 103: 49-54
        • Schelbert E.B.
        • Fridman Y.
        • Wong T.C.
        • Abu Daya H.
        • Piehler K.M.
        • Kadakkal A.
        • Miller C.A.
        • Ugander M.
        • Maanja M.
        • Kellman P.
        • Shah D.J.
        • Abebe K.Z.
        • Simon M.A.
        • Quarta G.
        • Senni M.
        • Butler J.
        • Diez J.
        • Redfield M.M.
        • Gheorghiade M.
        Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome.
        JAMA Cardiol. 2017; 2: 995-1006
        • Hancock E.W.
        • Deal B.J.
        • Mirvis D.M.
        • Okin P.
        • Kligfield P.
        • Gettes L.S.
        • Bailey J.J.
        • Childers R.
        • Gorgels A.
        • Josephson M.
        • Kors J.A.
        • Macfarlane P.
        • Mason J.W.
        • Pahlm O.
        • Rautaharju P.M.
        • Surawicz B.
        • van Herpen G.
        • Wagner G.S.
        • Wellens H.
        • American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology
        • American College of Cardiology Foundation
        • Heart Rhythm Society
        AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy.
        J Am Coll Cardiol. 2009; 53: 992-1002