Advertisement

Meta-Analysis of Transcatheter Valve-in-Valve Implantation Versus Redo Aortic Valve Surgery for Bioprosthetic Aortic Valve Dysfunction

      Transcatheter valve-in-valve implantation (ViV-TAVI) has evolved as an alternative to redo surgical valve replacement (redo-SAVR) for high-risk patients with aortic bioprosthetic valve (BPV) dysfunction. The differences in procedural success and outcomes in a large number of patients who underwent ViV-TAVI compared with redo-SAVR for aortic BPV dysfunction are not known. We conducted a meta-analysis of the previously reported studies to determine outcomes after ViV-TAVI and redo-SAVR. PubMed, MEDLINE, and Google Scholar databases were searched for studies that reported comparative outcomes of patients who underwent either ViV-TAVI or redo-SAVR. Four observational studies met the inclusion criteria, with a total of 489 patients, 227 of whom underwent ViV-TAVI and 262 underwent redo-SAVR. Thirty-day mortality was similar in 2 groups (5% vs 4%; odds ratio [OR] = 1.08, 95% confidence interval [CI] = 0.44 to 2.62) despite the higher operative risk in the ViV-TAVI cohort as evidenced by significantly higher EuroSCORE I or II. There were similar rates of stroke (2% vs 2%; OR = 1.00, 95% CI = 0.28 to 3.59), myocardial infarction (2% vs 1%; OR = 1.08, 95% CI = 0.27 to 4.33), and acute kidney injury requiring dialysis (7% vs 10%; OR = 0.80, 95% CI = 0.36 to 0.1.77) between 2 groups but a lower rate of permanent pacemaker implantation in the ViV-TAVI group (9% vs 15%; OR = 0.44, 95% CI = 0.24 to 0.81). This meta-analysis of nonrandomized studies with modest number of patients suggested that ViV-TAVI had similar 30-day survival compared with redo-SAVR for aortic BPV dysfunction.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Glower D.D.
        • Landolfo K.P.
        • Cheruvu S.
        • Cen Y.Y.
        • Harrison J.K.
        • Bashore T.M.
        • Smith P.K.
        • Jones R.H.
        • Wolfe W.G.
        • Lowe J.E.
        Determinants of 15-year outcome with 1119 standard Carpentier-Edwards porcine valves.
        Ann Thorac Surg. 1998; 66: S44-S48
        • Ruel M.
        • Kulik A.
        • Rubens F.D.
        • Bedard P.
        • Masters R.G.
        • Pipe A.L.
        • Mesana T.G.
        Late incidence and determinants of reoperation in patients with prosthetic heart valves.
        Eur J Cardiothorac Surg. 2004; 25: 364-370
        • David T.E.
        • Ivanov J.
        • Armstrong S.
        • Feindel C.M.
        • Cohen G.
        Late results of heart valve replacement with the Hancock II bioprosthesis.
        J Thorac Cardiovasc Surg. 2001; 121: 268-277
        • Brennan J.M.
        • Edwards F.H.
        • Zhao Y.
        • O'Brien S.
        • Booth M.E.
        • Dokholyan R.S.
        • Douglas P.S.
        • Peterson E.D.
        • DEcIDE AVR (Developing Evidence to Inform Decisions about Effectiveness–Aortic Valve Replacement) Research Team
        Long-term safety and effectiveness of mechanical versus biologic aortic valve prostheses in older patients: results from the society of thoracic surgeons adult cardiac surgery national database.
        Circulation. 2013; 127: 1647-1655
        • Brown J.M.
        • O'Brien S.M.
        • Wu C.
        • Sikora J.A.
        • Griffith B.P.
        • Gammie J.S.
        Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database.
        J Thorac Cardiovasc Surg. 2009; 137: 82-90
        • Christiansen S.
        • Schmid M.
        • Autschbach R.
        Perioperative risk of redo aortic valve replacement.
        Ann Thorac Cardiovasc Surg. 2009; 15: 105-110
        • Leontyev S.
        • Borger M.A.
        • Davierwala P.
        • Walther T.
        • Lehmann S.
        • Kempfert J.
        • Mohr F.W.
        Redo aortic valve surgery: early and late outcomes.
        Ann Thorac Surg. 2011; 91: 1120-1126
        • Borger M.A.
        • Prasongsukarn K.
        • Armstrong S.
        • Feindel C.M.
        • David T.E.
        Stentless aortic valve reoperations: a surgical challenge.
        Ann Thorac Surg. 2007; 84: 737-743
        • Wenaweser P.
        • Buellesfeld L.
        • Gerckens U.
        • Grube E.
        Percutaneous aortic valve replacement for severe aortic regurgitation in degenerated bioprosthesis: the first valve in valve procedure using the CoreValve Revalving System.
        Catheter Cardiovasc Interv. 2007; 70: 760-764
        • Khawaja M.Z.
        • Haworth P.
        • Ghuran A.
        • Lee L.
        • de Belder A.
        • Hutchinson N.
        • Trivedi U.
        • Laborde J.C.
        • Hildick-Smith D.
        Transcatheter aortic valve implantation for stenosed and regurgitant aortic valve bioprostheses CoreValve for failed bioprosthetic aortic valve replacements.
        J Am Coll Cardiol. 2010; 55: 97-101
        • Webb J.G.
        • Wood D.A.
        • Ye J.
        • Gurvitch R.
        • Masson J.B.
        • Rodes-Cabau J.
        • Osten M.
        • Horlick E.
        • Wendler O.
        • Dumont E.
        • Carere R.G.
        • Wijesinghe N.
        • Nietlispach F.
        • Johnson M.
        • Thompson C.R.
        • Moss R.
        • Leipsic J.
        • Munt B.
        • Lichtenstein S.V.
        • Cheung A.
        Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves.
        Circulation. 2010; 121: 1848-1857
        • Eggebrecht H.
        • Schafer U.
        • Treede H.
        • Boekstegers P.
        • Babin-Ebell J.
        • Ferrari M.
        • Mollmann H.
        • Baumgartner H.
        • Carrel T.
        • Kahlert P.
        • Lange P.
        • Walther T.
        • Erbel R.
        • Mehta R.H.
        • Thielmann M.
        Valve-in-valve transcatheter aortic valve implantation for degenerated bioprosthetic heart valves.
        JACC Cardiovasc Interv. 2011; 4: 1218-1227
        • Bapat V.
        • Davies W.
        • Attia R.
        • Hancock J.
        • Bolter K.
        • Young C.
        • Redwood S.
        • Thomas M.
        Use of balloon expandable transcatheter valves for valve-in-valve implantation in patients with degenerative stentless aortic bioprostheses: technical considerations and results.
        J Thorac Cardiovasc Surg. 2014; 148: 917-922
        • Ye J.
        • Cheung A.
        • Yamashita M.
        • Wood D.
        • Peng D.
        • Gao M.
        • Thompson C.R.
        • Munt B.
        • Moss R.R.
        • Blanke P.
        • Leipsic J.
        • Dvir D.
        • Webb J.G.
        Transcatheter aortic and mitral valve-in-valve implantation for failed surgical bioprosthetic valves: an 8-year single-center experience.
        JACC Cardiovasc Interv. 2015; 8: 1735-1744
        • Duncan A.
        • Davies S.
        • Di Mario C.
        • Moat N.
        Valve-in-valve transcatheter aortic valve implantation for failing surgical aortic stentless bioprosthetic valves: a single-center experience.
        J Thorac Cardiovasc Surg. 2015; 150: 91-98
        • Dvir D.
        • Webb J.G.
        • Bleiziffer S.
        • Pasic M.
        • Waksman R.
        • Kodali S.
        • Barbanti M.
        • Latib A.
        • Schaefer U.
        • Rodes-Cabau J.
        • Treede H.
        • Piazza N.
        • Hildick-Smith D.
        • Himbert D.
        • Walther T.
        • Hengstenberg C.
        • Nissen H.
        • Bekeredjian R.
        • Presbitero P.
        • Ferrari E.
        • Segev A.
        • de Weger A.
        • Windecker S.
        • Moat N.E.
        • Napodano M.
        • Wilbring M.
        • Cerillo A.G.
        • Brecker S.
        • Tchetche D.
        • Lefevre T.
        • De Marco F.
        • Fiorina C.
        • Petronio A.S.
        • Teles R.C.
        • Testa L.
        • Laborde J.C.
        • Leon M.B.
        • Kornowski R.
        Valve-in-Valve International Data Registry I. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves.
        JAMA. 2014; 312: 162-170
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gotzsche P.C.
        • Ioannidis J.P.
        • Clarke M.
        • Devereaux P.J.
        • Kleijnen J.
        • Moher D.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration.
        BMJ. 2009; 339: b2700
        • Grubitzsch H.
        • Zobel S.
        • Christ T.
        • Holinski S.
        • Stangl K.
        • Treskatsch S.
        • Falk V.
        • Laule M.
        Redo procedures for degenerated stentless aortic xenografts and the role of valve-in-valve transcatheter techniques.
        Eur J Cardiothorac Surg. 2017; 51: 653-659
        • Silaschi M.
        • Wendler O.
        • Seiffert M.
        • Castro L.
        • Lubos E.
        • Schirmer J.
        • Blankenberg S.
        • Reichenspurner H.
        • Schafer U.
        • Treede H.
        • MacCarthy P.
        • Conradi L.
        Transcatheter valve-in-valve implantation versus redo surgical aortic valve replacement in patients with failed aortic bioprostheses.
        Interact Cardiovasc Thorac Surg. 2017; 24: 63-70
        • Erlebach M.
        • Wottke M.
        • Deutsch M.A.
        • Krane M.
        • Piazza N.
        • Lange R.
        • Bleiziffer S.
        Redo aortic valve surgery versus transcatheter valve-in-valve implantation for failing surgical bioprosthetic valves: consecutive patients in a single-center setting.
        J Thorac Dis. 2015; 7: 1494-1500
        • Spaziano M.
        • Mylotte D.
        • Thériault-Lauzier P.
        • De Backer O.
        • Søndergaard L.
        • Bosmans J.
        • Debry N.
        • Modine T.
        • Barbanti M.
        • Tamburino C.
        • Sinning J.M.
        Transcatheter aortic valve implantation versus re-do surgery for failing surgical aortic bioprosthesis: a multi-centre propensity score analysis.
        EuroIntervention. 2017; 20: 1149-1156
        • Dvir D.
        • Webb J.
        • Brecker S.
        • Bleiziffer S.
        • Hildick-Smith D.
        • Colombo A.
        • Descoutures F.
        • Hengstenberg C.
        • Moat N.E.
        • Bekeredjian R.
        • Napodano M.
        Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry.
        Circulation. 2012; 126: 2335-2344
        • Smith C.R.
        • Leon M.B.
        • Mack M.J.
        • Miller D.C.
        • Moses J.W.
        • Svensson L.G.
        • Tuzcu E.M.
        • Webb J.G.
        • Fontana G.P.
        • Makkar R.R.
        • Williams M.
        • Dewey T.
        • Kapadia S.
        • Babaliaros V.
        • Thourani V.H.
        • Corso P.
        • Pichard A.D.
        • Bavaria J.E.
        • Herrmann H.C.
        • Akin J.J.
        • Anderson W.N.
        • Wang D.
        • Pocock S.J.
        Transcatheter versus surgical aortic-valve replacement in high-risk patients.
        N Engl J Med. 2011; 364: 2187-2198
        • Leon M.B.
        • Smith C.R.
        • Mack M.J.
        • Makkar R.R.
        • Svensson L.G.
        • Kodali S.K.
        • Thourani V.H.
        • Tuzcu E.M.
        • Miller D.C.
        • Herrmann H.C.
        • Doshi D.
        • Cohen D.J.
        • Pichard A.D.
        • Kapadia S.
        • Dewey T.
        • Babaliaros V.
        • Szeto W.Y.
        • Williams M.R.
        • Kereiakes D.
        • Zajarias A.
        • Greason K.L.
        • Whisenant B.K.
        • Hodson R.W.
        • Moses J.W.
        • Trento A.
        • Brown D.L.
        • Fearon W.F.
        • Pibarot P.
        • Hahn R.T.
        • Jaber W.A.
        • Anderson W.N.
        • Alu M.C.
        • Webb J.G.
        • Investigators P.
        Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2016; 374: 1609-1620
        • Reardon M.J.
        • Van Mieghem N.M.
        • Popma J.J.
        • Kleiman N.S.
        • Sondergaard L.
        • Mumtaz M.
        • Adams D.H.
        • Deeb G.M.
        • Maini B.
        • Gada H.
        • Chetcuti S.
        • Gleason T.
        • Heiser J.
        • Lange R.
        • Merhi W.
        • Oh J.K.
        • Olsen P.S.
        • Piazza N.
        • Williams M.
        • Windecker S.
        • Yakubov S.J.
        • Grube E.
        • Makkar R.
        • Lee J.S.
        • Conte J.
        • Vang E.
        • Nguyen H.
        • Chang Y.
        • Mugglin A.S.
        • Serruys P.W.
        • Kappetein A.P.
        • Investigators S.
        Surgical or transcatheter aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2017; 376: 1321-1331
        • Chhatriwalla A.K.
        • Allen K.B.
        • Saxon J.T.
        • Cohen D.J.
        • Aggarwal S.
        • Hart A.J.
        • Baron S.J.
        • Dvir D.
        • Borkon A.M.
        Bioprosthetic valve fracture improves the hemodynamic results of valve-in-valve transcatheter aortic valve replacement.
        Circ Cardiovasc Interv. 2017; 10 (e005216)
        • Sponga S.
        • Perron J.
        • Dagenais F.
        • Mohammadi S.
        • Baillot R.
        • Doyle D.
        • Nalli C.
        • Voisine P.
        Impact of residual regurgitation after aortic valve replacement.
        Eur J Cardiothorac Surg. 2012; 42: 486-492
        • Gotzmann M.
        • Korten M.
        • Bojara W.
        • Lindstaedt M.
        • Rahlmann P.
        • Mügge A.
        • Ewers A.
        Long-term outcome of patients with moderate and severe prosthetic aortic valve regurgitation after transcatheter aortic valve implantation.
        Am J Cardiol. 2012; 110: 1500-1506
        • Tamburino C.
        • Capodanno D.
        • Ramondo A.
        • Petronio A.S.
        • Ettori F.
        • Santoro G.
        • Klugmann S.
        • Bedogni F.
        • Maisano F.
        • Marzocchi A.
        • Poli A.
        Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis.
        Circulation. 2011; 123: 299-308
        • Davierwala P.M.
        • Borger M.A.
        • David T.E.
        • Rao V.
        • Maganti M.
        • Yau T.M.
        Reoperation is not an independent predictor of mortality during aortic valve surgery.
        J Thorac Cardiovasc Surg. 2006; 131: 329-335
        • Erdogan H.B.
        • Kayalar N.
        • Ardal H.
        • Omeroglu S.N.
        • Kirali K.
        • Guler M.
        • Akinci E.
        • Yakut C.
        Risk factors for requirement of permanent pacemaker implantation after aortic valve replacement.
        J Card Surg. 2006; 21: 211-215