Correlation of Fractional Flow Reserve With Ischemic Burden Measured by Cardiovascular Magnetic Resonance Perfusion Imaging

Published:September 04, 2017DOI:https://doi.org/10.1016/j.amjcard.2017.08.002
      Cardiovascular magnetic resonance (CMR) perfusion imaging and fractional flow reserve (FFR) assess myocardial ischemia. FFR measures the pressure loss across a stenosis determining hemodynamic significance but does not assess the area subtended by the stenotic vessel. CMR perfusion imaging measures the extent of myocardial blood flow reduction (=ischemic burden). Both techniques allow for continuous rather than categorical evaluation, but their relationship is poorly understood. This study investigates the relationship between the FFR value and the extent of myocardial ischemia. Forty-nine patients with angina underwent CMR perfusion imaging. FFR was measured in vessels with a visual diameter stenosis >40%. The extent of ischemia for each coronary artery was measured by delineating the perfusion defect on the CMR images and expressing as a percentage of the left ventricular myocardium. The correlation between the extent of ischemia measured by CMR and FFR was good (r = −0.85, p < 0.0005). The mean FFR value was 0.67 ± 0.17, and the mean perfusion defect was 8.9 ± 9.3%. An FFR value of ≥0.75 was not associated with ischemia on CMR. The maximum amount of ischemia (23.0 ± 1.5%) was found at FFR values 0.4 to 0.5. In patients with 1 vessel disease (49%), the mean ischemic burden was 15.3 ± 8.3%. In patients with 2 vessel diseases (18%), the mean ischemic burden was 26.0 ± 12%. Reproducibility for the measurement of ischemic burden was very good with a Kappa coefficient (k = 0.826, p = 0.048). In conclusion, there is good correlation between the FFR value and the amount of myocardial ischemia in the subtended myocardium.
      To read this article in full you will need to make a payment

      References

        • Wijns W.
        • Kolh P.
        • Danchin N.
        • Di Mario C.
        • Falk V.
        • Folliguet T.
        • Garg S.
        • Huber K.
        • James S.
        • Knuuti J.
        • Lopez-Sendon J.
        • Marco J.
        • Menicanti L.
        • Ostojic M.
        • Piepoli M.F.
        • Pirlet C.
        • Pomar J.L.
        • Reifart N.
        • Ribichini F.L.
        • Schalij M.J.
        • Sergeant P.
        • Serruys P.W.
        • Silber S.
        • Sousa Uva M.
        • Taggart D.
        • Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
        • European Association for Percutaneous Cardiovascular Interventions (EAPCI)
        Guidelines on myocardial revascularization.
        Eur Heart J. 2010; 31: 2501-2555
        • Shaw L.J.
        • Berman D.S.
        • Maron D.J.
        • Mancini G.B.
        • Hayes S.W.
        • Hartigan P.M.
        • Weintraub W.S.
        • O'Rourke R.A.
        • Dada M.
        • Spertus J.A.
        • Chaitman B.R.
        • Friedman J.
        • Slomka P.
        • Heller G.V.
        • Germano G.
        • Gosselin G.
        • Berger P.
        • Kostuk W.J.
        • Schwartz R.G.
        • Knudtson M.
        • Veledar E.
        • Bates E.R.
        • McCallister B.
        • Teo K.K.
        • Boden W.E.
        • COURAGE Investigators
        Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy.
        Circulation. 2008; 117: 1283-1291
        • Hachamovitch R.
        • Hayes S.W.
        • Friedman J.D.
        • Cohen I.
        • Berman D.S.
        Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography.
        Circulation. 2003; 107: 2900-2907
        • Tonino P.A.
        • De Bruyne B.
        • Pijls N.H.
        • Siebert U.
        • Ikeno F.
        • van't Veer M.
        • Klauss V.
        • Manoharan G.
        • Engstrom T.
        • Oldroyd K.G.
        • Ver Lee P.N.
        • MacCarthy P.A.
        • Fearon W.F.
        • FAME Study Investigators
        Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.
        N Engl J Med. 2009; 360: 213-224
        • De Bruyne B.
        • Pijls N.H.
        • Kalesan B.
        • Barbato E.
        • Tonino P.A.
        • Piroth Z.
        • Jagic N.
        • Mobius-Winkler S.
        • Rioufol G.
        • Witt N.
        • Kala P.
        • MacCarthy P.
        • Engstrom T.
        • Oldroyd K.G.
        • Mavromatis K.
        • Manoharan G.
        • Verlee P.
        • Frobert O.
        • Curzen N.
        • Johnson J.B.
        • Juni P.
        • Fearon W.F.
        • FAME 2 Trial Investigators
        Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease.
        N Engl J Med. 2012; 367: 991-1001
        • Pijls N.H.
        • De Bruyne B.
        • Peels K.
        • Van Der Voort P.H.
        • Bonnier H.J.
        • Bartunek J.K.J.J.
        • Koolen J.J.
        Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.
        N Engl J Med. 1996; 334: 1703-1708
        • De Bruyne B.
        • Pijls N.H.
        • Heyndrickx G.R.
        • Hodeige D.
        • Kirkeeide R.
        • Gould K.L.
        Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation.
        Circulation. 2000; 101: 1840-1847
        • de Bruyne B.
        • Bartunek J.
        • Sys S.U.
        • Pijls N.H.
        • Heyndrickx G.R.
        • Wijns W.
        Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve.
        Circulation. 1996; 94: 1842-1849
        • Christian T.F.
        • Rettmann D.W.
        • Aletras A.H.
        • Liao S.L.
        • Taylor J.L.
        • Balaban R.S.
        • Arai A.E.
        Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging.
        Radiology. 2004; 232: 677-684
        • Jerosch-Herold M.
        • Swingen C.
        • Seethamraju R.T.
        Myocardial blood flow quantification with MRI by model-independent deconvolution.
        Med Phys. 2002; 29: 886-897
        • Jahnke C.
        • Nagel E.
        • Gebker R.
        • Kokocinski T.
        • Kelle S.
        • Manka R.
        • Fleck E.
        • Paetsch I.
        Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging.
        Circulation. 2007; 115: 1769-1776
        • Schwitter J.
        • Wacker C.M.
        • Wilke N.
        • Al-Saadi N.
        • Sauer E.
        • Huettle K.
        • Schonberg S.O.
        • Luchner A.
        • Strohm O.
        • Ahlstrom H.
        • Dill T.
        • Hoebel N.
        • Simor T.
        • MR-IMPACT Investigators
        MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial.
        Eur Heart J. 2013; 34: 775-781
        • Greenwood J.P.
        • Maredia N.
        • Younger J.F.
        • Brown J.M.
        • Nixon J.
        • Everett C.C.
        • Bijsterveld P.
        • Ridgway J.P.
        • Radjenovic A.
        • Dickinson C.J.
        • Ball S.G.
        • Plein S.
        Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial.
        Lancet. 2012; 379: 453-460
        • Shaw L.J.
        • Berman D.S.
        • Picard M.H.
        • Friedrich M.G.
        • Kwong R.Y.
        • Stone G.W.
        • Senior R.
        • Min J.K.
        • Hachamovitch R.
        • Scherrer-Crosbie M.
        • Mieres J.H.
        • Marwick T.H.
        • Phillips L.M.
        • Chaudhry F.A.
        • Pellikka P.A.
        • Slomka P.
        • Arai A.E.
        • Iskandrian A.E.
        • Bateman T.M.
        • Heller G.V.
        • Miller T.D.
        • Nagel E.
        • Goyal A.
        • Borges-Neto S.
        • Boden W.E.
        • Reynolds H.R.
        • Hochman J.S.
        • Maron D.J.
        • Douglas P.S.
        • National Institutes of Health/National Heart, Lung, and Blood Institute-Sponsored ISCHEMIA Trial Investigators
        Comparative definitions for moderate-severe ischemia in stress nuclear, echocardiography, and magnetic resonance imaging.
        JACC Cardiovasc Imaging. 2014; 7: 593-604
        • Lockie T.
        • Ishida M.
        • Perera D.
        • Chiribiri A.
        • De Silva K.
        • Kozerke S.
        • Marber M.
        • Nagel E.
        • Rezavi R.
        • Redwood S.
        • Plein S.
        High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve.
        J Am Coll Cardiol. 2011; 57: 70-75
        • Watkins S.
        • McGeoch R.
        • Lyne J.
        • Steedman T.
        • Good R.
        • McLaughlin M.J.
        • Cunningham T.
        • Bezlyak V.
        • Ford I.
        • Dargie H.J.
        • Oldroyd K.G.
        Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease.
        Circulation. 2009; 120: 2207-2213
        • Costa M.A.
        • Shoemaker S.
        • Futamatsu H.
        • Klassen C.
        • Angiolillo D.J.
        • Nguyen M.
        • Siuciak A.
        • Gilmore P.
        • Zenni M.M.
        • Guzman L.
        • Bass T.A.
        • Wilke N.
        Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve.
        J Am Coll Cardiol. 2007; 50: 514-522
        • Nagel E.
        • Klein C.
        • Paetsch I.
        • Hettwer S.
        • Schnackenburg B.
        • Wegscheider K.
        • Fleck E.
        Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease.
        Circulation. 2003; 108: 432-437
        • Ishida M.
        • Schuster A.
        • Morton G.
        • Chiribiri A.
        • Hussain S.
        • Paul M.
        • Merkle N.
        • Steen H.
        • Lossnitzer D.
        • Schnackenburg B.
        • Alfakih K.
        • Plein S.
        • Nagel E.
        Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2011; 13: 28
        • Cerqueira M.D.
        • Weissman N.J.
        • Dilsizian V.
        • Jacobs A.K.
        • Kaul S.
        • Laskey W.K.
        • Pennell D.J.
        • Rumberger J.A.
        • Ryan T.
        • Verani M.S.
        • American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging
        Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
        Int J Cardiovasc Imaging. 2002; 18: 539-542
        • Pijls N.H.
        • Sels J.W.
        Functional measurement of coronary stenosis.
        J Am Coll Cardiol. 2012; 59: 1045-1057
        • Leone A.M.
        • De Caterina A.R.
        • Basile E.
        • Gardi A.
        • Laezza D.
        • Mazzari M.A.
        • Mongiardo R.
        • Kharbanda R.
        • Cuculi F.
        • Porto I.
        • Niccoli G.
        • Burzotta F.
        • Trani C.
        • Banning A.P.
        • Rebuzzi A.G.
        • Crea F.
        Influence of the amount of myocardium subtended by a stenosis on fractional flow reserve.
        Circ Cardiovasc Interv. 2013; 6: 29-36
        • Yong A.S.
        • Ng A.C.
        • Brieger D.
        • Lowe H.C.
        • Ng M.K.
        • Kritharides L.
        Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve.
        Eur Heart J. 2011; 32: 345-353
        • Johnson N.P.
        • Toth G.G.
        • Lai D.
        • Zhu H.
        • Acar G.
        • Agostoni P.
        • Appelman Y.
        • Arslan F.
        • Barbato E.
        • Chen S.L.
        • Di Serafino L.
        • Dominguez-Franco A.J.
        • Dupouy P.
        • Esen A.M.
        • Esen O.B.
        • Hamilos M.
        • Iwasaki K.
        • Jensen L.O.
        • Jimenez-Navarro M.F.
        • Katritsis D.G.
        • Kocaman S.A.
        • Koo B.K.
        • Lopez-Palop R.
        • Lorin J.D.
        • Miller L.H.
        • Muller O.
        • Nam C.W.
        • Oud N.
        • Puymirat E.
        • Rieber J.
        • Rioufol G.
        • Rodes-Cabau J.
        • Sedlis S.P.
        • Takeishi Y.
        • Tonino P.A.
        • Van Belle E.
        • Verna E.
        • Werner G.S.
        • Fearon W.F.
        • Pijls N.H.
        • De Bruyne B.
        • Gould K.L.
        Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes.
        J Am Coll Cardiol. 2014; 64: 1641-1654
        • Hachamovitch R.
        • Berman D.S.
        • Shaw L.J.
        • Kiat H.
        • Cohen I.
        • Cabico J.A.
        • Friedman J.
        • Diamond G.A.
        Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction.
        Circulation. 1998; 97: 535-543
        • Berry C.
        • Balachandran K.P.
        • L'Allier P.L.
        • Lesperance J.
        • Bonan R.
        • Oldroyd K.G.
        Importance of collateral circulation in coronary heart disease.
        Eur Heart J. 2007; 28: 278-291
        • Manka R.
        • Paetsch I.
        • Kozerke S.
        • Moccetti M.
        • Hoffmann R.
        • Schroeder J.
        • Reith S.
        • Schnackenburg B.
        • Gaemperli O.
        • Wissmann L.
        • Wyss C.A.
        • Kaufmann P.A.
        • Corti R.
        • Boesiger P.
        • Marx N.
        • Luscher T.F.
        • Jahnke C.
        Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location.
        Eur Heart J. 2012; 33: 2016-2024
        • Jogiya R.
        • Kozerke S.
        • Morton G.
        • De Silva K.
        • Redwood S.
        • Perera D.
        • Nagel E.
        • Plein S.
        Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease.
        J Am Coll Cardiol. 2012; 60: 756-765