Relation of Iliac Artery Calcium With Adiposity Measures and Peripheral Artery Disease

Published:January 25, 2017DOI:
      Arterial calcification is associated with cardiovascular morbidity and mortality. To improve the understanding of the pathogenesis involved with iliac artery calcium (IAC), we sought to examine the associations between the burden of IAC with adiposity measures and peripheral artery disease (PAD). Participants (n = 1,236, 52% women, mean age 60 years) were drawn from the Framingham Heart Study Offspring cohort who underwent multidetector computed tomography. The extent of IAC was quantified based on calcified atherosclerotic plaques detected in the iliac arteries. High IAC was defined based on gender-specific 90th percentile cut-off points from a healthy referent subsample. PAD is defined as an ankle-brachial index < 0.9, intermittent claudication, and/or history of lower extremity revascularization. The association between PAD and IAC was assessed using multivariable-adjusted logistic regression models. The burden of high IAC was 20.5% in women and 25.5% in men. High IAC was not associated with generalized (body mass index) or area-specific (waist circumference, and volumes of thoracic periaortic, abdominal subcutaneous, and visceral adipose tissue) adiposity measures (all p ≥0.22). High IAC was associated with increased odds of PAD (odds ratio 10.36, 95% confidence interval 4.28 to 25.09). This association persisted even after additionally adjusting for coronary artery calcium (odds ratio 11.25, 95% confidence interval 4.29 to 29.53). Burden of IAC was associated with an increased risk of PAD.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Dawber T.R.
        • Kannel W.B.
        • Lyell L.P.
        An approach to longitudinal studies in a community: the Framingham Study.
        Ann N Y Acad Sci. 1963; 107: 539-556
        • Fox C.S.
        • Massaro J.M.
        • Schlett C.L.
        • Lehman S.J.
        • Meigs J.B.
        • O'Donnell C.J.
        • Hoffmann U.
        • Murabito J.M.
        Periaortic fat deposition is associated with peripheral arterial disease: the Framingham Heart Study.
        Circ Cardiovasc Imaging. 2010; 3: 515-519
        • Fox C.S.
        • Massaro J.M.
        • Hoffmann U.
        • Pou K.M.
        • Maurovich-Horvat P.
        • Liu C.Y.
        • Vasan R.S.
        • Murabito J.M.
        • Meigs J.B.
        • Cupples L.A.
        • D'Agostino Sr., R.B.
        • O'Donnell C.J.
        Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.
        Circulation. 2007; 116: 39-48
        • Nasir K.
        • McClelland R.L.
        • Blumenthal R.S.
        • Goff Jr., D.C.
        • Hoffmann U.
        • Psaty B.M.
        • Greenland P.
        • Kronmal R.A.
        • Budoff M.J.
        Coronary artery calcium in relation to initiation and continuation of cardiovascular preventive medications: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Circ Cardiovasc Qual Outcomes. 2010; 3: 228-235
        • Agatston A.S.
        • Janowitz W.R.
        • Hildner F.J.
        • Zusmer N.R.
        • Viamonte Jr., M.
        • Detrano R.
        Quantification of coronary artery calcium using ultrafast computed tomography.
        J Am Coll Cardiol. 1990; 15: 827-832
        • Hoffmann U.
        • Massaro J.M.
        • Fox C.S.
        • Manders E.
        • O'Donnell C.J.
        Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study).
        Am J Cardiol. 2008; 102: 1136-1141
        • Chuang M.L.
        • Massaro J.M.
        • Levitzky Y.S.
        • Fox C.S.
        • Manders E.S.
        • Hoffmann U.
        • O'Donnell C.J.
        Prevalence and distribution of abdominal aortic calcium by gender and age group in a community-based cohort (from the Framingham Heart Study).
        Am J Cardiol. 2012; 110: 891-896
        • Hoffmann U.
        • Siebert U.
        • Bull-Stewart A.
        • Achenbach S.
        • Ferencik M.
        • Moselewski F.
        • Brady T.J.
        • Massaro J.M.
        • O’Donnell C.J.
        Evidence for lower variability of coronary artery calcium mineral mass measurements by multi-detector computed tomography in a community-based cohort—consequences for progression studies.
        Eur J Radiol. 2006; 57: 396-402
        • Schlett C.L.
        • Massaro J.M.
        • Lehman S.J.
        • Bamberg F.
        • O'Donnell C.J.
        • Fox C.S.
        • Hoffmann U.
        Novel measurements of periaortic adipose tissue in comparison to anthropometric measures of obesity, and abdominal adipose tissue.
        Int J Obes (Lond). 2009; 33: 226-232
        • Maurovich-Horvat P.
        • Massaro J.
        • Fox C.S.
        • Moselewski F.
        • O'Donnell C.J.
        • Hoffmann U.
        Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography.
        Int J Obes (Lond). 2007; 31: 500-506
        • Murabito J.M.
        • Evans J.C.
        • Nieto K.
        • Larson M.G.
        • Levy D.
        • Wilson P.W.
        Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study.
        Am Heart J. 2002; 143: 961-965
        • Murabito J.M.
        • D'Agostino R.B.
        • Silbershatz H.
        • Wilson W.F.
        Intermittent claudication. A risk profile from the Framingham Heart Study.
        Circulation. 1997; 96: 44-49
        • Ditomasso D.
        • Carnethon M.R.
        • Wright C.M.
        • Allison M.A.
        The associations between visceral fat and calcified atherosclerosis are stronger in women than men.
        Atherosclerosis. 2010; 208: 531-536
        • Jensky N.E.
        • Criqui M.H.
        • Wright C.M.
        • Wassel C.L.
        • Alcaraz J.E.
        • Allison M.A.
        The association between abdominal body composition and vascular calcification.
        Obesity (Silver Spring). 2011; 19: 2418-2424
        • Reiner J.A.
        • Macera C.A.
        • Alcarz J.
        • Fitzsimmons L.
        • Allison M.
        Pericardial fat and systemic vascular calcification.
        (PhD Thesis) San Diego State University, USA2011
        • Britton K.A.
        • Fox C.S.
        Ectopic fat depots and cardiovascular disease.
        Circulation. 2011; 124: e837-e841
        • Yudkin J.S.
        • Eringa E.
        • Stehouwer C.D.
        “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease.
        Lancet. 2005; 365: 1817-1820
        • Fantuzzi G.
        • Mazzone T.
        Adipose tissue and atherosclerosis: exploring the connection.
        Arterioscler Thromb Vasc Biol. 2007; 27: 996-1003
        • Yun C.H.
        • Bezerra H.G.
        • Wu T.H.
        • Yang F.S.
        • Liu C.C.
        • Wu Y.J.
        • Kuo J.Y.
        • Hung C.L.
        • Lee J.J.
        • Hou C.J.
        • Yeh H.I.
        • Longenecker C.T.
        • Cury R.C.
        The normal limits, subclinical significance, related metabolic derangements and distinct biological effects of body site-specific adiposity in relatively healthy population.
        PLoS One. 2013; 8: e61997
        • Lehman S.J.
        • Massaro J.M.
        • Schlett C.L.
        • O'Donnell C.J.
        • Hoffmann U.
        • Fox C.S.
        Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study.
        Atherosclerosis. 2010; 210: 656-661
        • Gornik H.L.
        • Beckman J.A.
        Peripheral arterial disease.
        Circulation. 2005; 111: e169-e172
        • Cunningham K.S.
        • Gotlieb A.I.
        The role of shear stress in the pathogenesis of atherosclerosis.
        Lab Invest. 2005; 85: 9-23
        • Nakazawa G.
        • Yazdani S.K.
        • Finn A.V.
        • Vorpahl M.
        • Kolodgie F.D.
        • Virmani R.
        Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation.
        J Am Coll Cardiol. 2010; 55: 1679-1687
        • Cheng C.
        • Tempel D.
        • van Haperen R.
        • van der Baan A.
        • Grosveld F.
        • Daemen M.J.
        • Krams R.
        • de Crom R.
        Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.
        Circulation. 2006; 113: 2744-2753
        • Traub O.
        • Berk B.C.
        Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force.
        Arterioscler Thromb Vasc Biol. 1998; 18: 677-685