Abundance and Significance of Iron, Zinc, Copper, and Calcium in the Hearts of Patients With Friedreich Ataxia

      Cardiomyopathy is a frequent cause of death in patients with Friedreich ataxia (FA), and a characteristic pathological feature is the focal accumulation of iron (Fe) in cardiomyocytes. This restricted localization of the metal contrasts with the diffuse cardiac Fe overload in hemochromatosis and transfusion siderosis. Nevertheless, heart Fe in FA contributes to cardiomyocyte necrosis, inflammation, and scarring as the disease progresses. A putative mechanism of cardiomyopathy in FA is Fe-mediated oxidative damage. Two other transition metals zinc (Zn) and copper (Cu), are diffusely distributed throughout normal hearts and the hearts of patients with FA. The myocardium in FA is also prone to deposits of calcium in the form of scattered concretions. In this study, heart tissues (left and right ventricular walls and ventricular septum) of 23 patients with genetically confirmed FA and 8 normal controls were obtained at autopsy and analyzed for Fe, Zn, Cu, and calcium. The principal assay methods were inductively coupled plasma optical emission spectrometry and plasma mass spectrometry. Total levels of Fe in bulk extracts were not significantly higher than normal, and the concentrations of Zn also remained in the normal range. Cu levels, however, were significantly lower in FA. In conclusion, the decrease of Cu may be important in consideration of the potential benefit of Cu supplements in FA cardiomyopathy.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Michael S.
        • Petrocine S.V.
        • Qian J.
        • Lamarche J.B.
        • Knutson M.D.
        • Garrick M.D.
        • Koeppen A.H.
        Iron and iron-responsive proteins in the cardiomyopathy of Friedreich's ataxia.
        Cerebellum. 2006; 5: 257-267
        • Koeppen A.H.
        Friedreich's ataxia: pathology, pathogenesis, and molecular genetics.
        J Neurol Sci. 2011; 303: 1-12
        • Koeppen A.H.
        • Ramirez R.L.
        • Becker A.B.
        • Bjork S.T.
        • Levi S.
        • Santambrogio P.
        • Parsons P.J.
        • Kruger P.C.
        • Yang K.X.
        • Feustel P.J.
        • Mazurkiewicz J.E.
        The pathogenesis of cardiomyopathy in Friedreich ataxia.
        PLoS One. 2015; 10 (eCollection 2015): e0116396
        • Lamarche J.B.
        • Côté M.
        • Lemieux B.
        The cardiomyopathy of Friedreich's ataxia morphological observations in 3 cases.
        Can J Neurol Sci. 1980; 7: 389-396
        • Campuzano V.
        • Montermini L.
        • Moltò M.D.
        • Pianese L.
        • Cossée M.
        • Cavalcanti F.
        • Monros E.
        • Rodius F.
        • Duclos F.
        • Monticelli A.
        • Zara F.
        • Cañizares J.
        • Koutnikova H.
        • Bidichandani S.I.
        • Gellera C.
        • Brice A.
        • Trouillas P.
        • De Michele G.
        • Filla A.
        • De Frutos R.
        • Palau F.
        • Patel P.I.
        • Di Donato S.
        • Mandel J.L.
        • Cocozza S.
        • Koenig M.
        • Pandolfo M.
        Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion.
        Science. 1996; 271: 1423-1427
        • Ramirez R.L.
        • Qian J.
        • Santambrogio P.
        • Levi S.
        • Koeppen A.H.
        Relation of cytosolic iron excess to cardiomyopathy of Friedreich's ataxia.
        Am J Cardiol. 2012; 110: 1820-1827
        • Keschner H.W.
        The heart in hemochromatosis.
        South Med J. 1951; 44: 927-931
        • Olson L.J.
        • Edwards W.D.
        • McCall J.T.
        • Ilstrup D.M.
        • Gersh B.J.
        Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy.
        J Am Coll Cardiol. 1987; 10: 1239-1243
        • Buja L.M.
        • Roberts W.C.
        Iron in the heart: etiology and clinical significance.
        Am J Med. 1971; 51: 209-221
        • Wester P.O.
        Concentration of 24 trace elements in human heart tissue determined by neutron activation analysis.
        Scand J Clin Lab Invest. 1965; 17: 357-370
        • Iyengar G.V.
        • Kollmer W.E.
        • Bowen H.J.M.
        The Elemental Composition of Human Tissues and Body Fluids: A Compilation of Values for Adults.
        Verlag Chemie, Weinheim and New York1978: 55-58
        • Chipperfield B.
        • Chipperfield J.R.
        Differences in metal content of the heart muscle in death from ischemic heart disease.
        Am Heart J. 1978; 95: 732-737
        • Julshamn K.
        • Andersen K.J.
        • Svendsen E.
        • Ringdal O.
        • Egholm M.
        Trace elements intake in the Faroe Islands III. Element concentrations in human organs in populations from Bergen (Norway) and the Faroe Islands.
        Sci Total Environ. 1989; 84: 25-33
        • Saltzman B.E.
        • Gross S.B.
        • Yeager D.W.
        • Meiners B.G.
        • Gartside P.S.
        Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers.
        Environ Res. 1990; 52: 126-145
        • Liebes R.
        • Medeiros D.M.
        Decreased nuclear encoded subunits of cytochrome c oxidase and increased copper, zinc-superoxide dismutase activity are found in cardiomyopathic human hearts.
        Int J Cardiol. 1997; 62: 259-267
        • Frustaci A.
        • Magnavita N.
        • Chimenti C.
        • Caldarulo M.
        • Sabbioni E.
        • Pietra R.
        • Cellini C.
        • Possati G.F.
        • Maseri A.
        Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction.
        J Am Coll Cardiol. 1999; 33: 1578-1583
        • Rahil-Khazen R.
        • Bolann B.J.
        • Myking A.
        • Ulvik R.J.
        Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES).
        J Trace Elem Med Biol. 2002; 16: 15-25
        • Ramirez R.L.
        • Becker A.B.
        • Mazurkiewicz J.E.
        • Feustel P.J.
        • Gelman B.B.
        • Koeppen A.H.
        Pathology of intercalated discs in Friedreich cardiomyopathy.
        J Am Coll Cardiol. 2015; 66: 1739-1740
        • Klevay L.M.
        Cardiovascular disease from copper deficiency-a history.
        J Nutr. 2000; 130: 489S-492S
        • Zheng L.
        • Han P.
        • Liu J.
        • Li R.
        • Yin W.
        • Wang T.
        • Zhang W.
        • Kang Y.J.
        Role of copper in regression of cardiac hypertrophy.
        Pharmacol Ther. 2015; 148: 66-84
        • Jaksch M.
        • Ogilvie I.
        • Yao J.
        • Kortenhaus G.
        • Bresser H.-G.
        • Gerbitz K.-D.
        • Shoubridge E.A.
        Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency.
        Hum Mol Genet. 2000; 9: 795-801
        • Kim B.-E.
        • Turski M.L.
        • Nose Y.
        • Casad M.
        • Rockman H.A.
        • Thiele D.J.
        Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs.
        Cell Metab. 2010; 11: 353-363
        • Papadopoulou L.C.
        • Sue C.M.
        • Davidson M.M.
        • Tanji K.
        • Nishino I.
        • Sadlock J.E.
        • Krishna S.
        • Walker W.
        • Selby J.
        • Glerum D.M.
        • Van Coster R.
        • Lyon G.
        • Scalais E.
        • Lebel R.
        • Kaplan P.
        • Shanske S.
        • De Vivo D.C.
        • Bonilla E.
        • Hirano M.
        • DiMauro S.
        • Schon E.A.
        Fatal infantile cardioencephalopathy with COX deficiency and mutations in SCO2, a COX assembly gene.
        Nat Genet. 1999; 23: 333-337
        • Leary S.C.
        • Winge D.R.
        • Cobine P.A.
        “Pulling the plug” on cellular copper: the role of mitochondria in copper export.
        Biochim Biophys Acta. 2009; 1793: 146-153
        • Rötig A.
        • de Lonlay P.
        • Chretien D.
        • Foury F.
        • Koenig M.
        • Sidi D.
        • Munnich A.
        • Rustin P.
        Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia.
        Nat Gen. 1997; 17: 215-217
        • Perdomini M.
        • Belbellaa B.
        • Monassier L.
        • Reutenauer L.
        • Messaddeq N.
        • Cartier N.
        • Crystal R.G.
        • Aubourg P.
        • Puccio H.
        Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia.
        Nat Med. 2014; 20: 542-547
        • Gérard C.
        • Xiao X.
        • Filali M.
        • Coulombe Z.
        • Arsenault M.
        • Couet J.
        • Li J.
        • Drolet M.-C.
        • Chapdelaine P.
        • Chikh A.
        • Tremblay J.P.
        An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models.
        Mol Ther Meth Clin Dev. 2014; 1: 14044
        • Pandolfo M.
        • Arpa J.
        • Delatycki M.B.
        • Le Quan Sang K.H.
        • Mariotti C.
        • Munnich A.
        • Sanz-Gallego I.
        • Tai G.
        • Tarnopolsky M.A.
        • Taroni F.
        • Spino M.
        • Tricta F.
        Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial.
        Ann Neurol. 2014; 76: 509-521