Advertisement

Acute Effect of Hookah Smoking on the Human Coronary Microcirculation

      Hookah (water pipe) smoking is a major new understudied epidemic affecting youth. Because burning charcoal is used to heat the tobacco product, hookah smoke delivers not only nicotine but also large amounts of charcoal combustion products, including carbon-rich nanoparticles that constitute putative coronary vasoconstrictor stimuli and carbon monoxide, a known coronary vasodilator. We used myocardial contrast echocardiography perfusion imaging with intravenous lipid shelled microbubbles in young adult hookah smokers to determine the net effect of smoking hookah on myocardial blood flow. In 9 hookah smokers (age 27 ± 5 years, mean ± SD), we measured myocardial blood flow velocity (β), myocardial blood volume (A), myocardial blood flow (A × β) as well as myocardial oxygen consumption (MVO2) before and immediately after 30 minutes of ad lib hookah smoking. Myocardial blood flow did not decrease with hookah smoking but rather increased acutely (88 ± 10 to 120 ± 19 a.u./s, mean ± SE, p = 0.02), matching a mild increase in MVO2 (6.5 ± 0.3 to 7.6 ± 0.4 ml·minute−1, p <0.001). This was manifested primarily by increased myocardial blood flow velocity (0.7 ± 0.1 to 0.9 ± 0.1 second−1, p = 0.01) with unchanged myocardial blood volume (133 ± 7 to 137 ± 7 a.u., p = ns), the same pattern of coronary microvascular response seen with a low-dose β-adrenergic agonist. Indeed, with hookah, the increased MVO2 was accompanied by decreased heart rate variability, an indirect index of adrenergic overactivity, and eliminated by β-adrenergic blockade (i.v. propranolol). In conclusion, nanoparticle-enriched hookah smoke either is not an acute coronary vasoconstrictor stimulus or its vasoconstrictor effect is too weak to overcome the physiologic dilation of coronary microvessels matching mild cardiac β-adrenergic stimulation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maziak W.
        • Taleb Z.B.
        • Bahelah R.
        • Islam F.
        • Jaber R.
        • Auf R.
        • Salloum R.
        The global epidemiology of waterpipe smoking.
        Tob Control. 2014; 1: i3-i12
        • Amrock S.M.
        • Gordon T.
        • Zelikoff J.T.
        • Weitzman M.
        Hookah use among adolescents in the United States: results of a national survey.
        Nicotine Tob Res. 2014; 16: 231-237
        • Rezk-Hanna M.
        • Macabasco-O'Connell A.
        • Woo M.
        Hookah smoking among young adults in southern California.
        Nurs Res. 2014; 63: 300-306
        • Benowitz N.L.
        • Hansson A.
        • Jacob III, P.
        Cardiovascular effects of nasal and transdermal nicotine and cigarette smoking.
        Hypertension. 2002; 39: 1107-1112
        • Czernin J.
        • Sun K.
        • Brunken R.
        • Bottcher M.
        • Phelps M.
        • Schelbert H.
        Effect of acute and long-term smoking on myocardial blood flow and flow reserve.
        Circulation. 1995; 91: 2891-2897
        • Hakim F.
        • Hellou E.
        • Goldbart A.
        • Katz R.
        • Bentur Y.
        • Bentur L.
        The acute effects of water-pipe smoking on the cardiorespiratory system.
        Chest. 2011; 139: 775-781
        • Cobb C.O.
        • Sahmarani K.
        • Eissenberg T.
        • Shihadeh A.
        Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a “healthy” tobacco-free alternative.
        Toxicol Lett. 2012; 215: 70-75
        • Brook R.D.
        • Rajagopalan S.
        • Pope 3rd, C.A.
        • Brook J.R.
        • Bhatnagar A.
        • Diez-Roux A.V.
        • Holguin F.
        • Hong Y.
        • Luepker R.V.
        • Mittleman M.A.
        • Peters A.
        • Siscovick D.
        • Smith Jr., S.C.
        • Whitsel L.
        • Kaufman J.D.
        • American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism
        Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association.
        Circulation. 2010; 121: 2331-2378
        • Jacob III, P.
        • Abu Raddaha A.H.
        • Dempsey D.
        • Havel C.
        • Peng M.
        • Yu L.
        • Benowitz N.L.
        Nicotine, carbon monoxide, and carcinogen exposure after a single use of a water pipe.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 2345-2353
        • Monn C.
        • Kindler P.
        • Meile A.
        • Brandli O.
        Ultrafine particle emissions from waterpipes.
        Tob Control. 2007; 16: 390-393
        • Zhou S.
        • Weitzman M.
        • Vilcassim R.
        • Wilson J.
        • Legrand N.
        • Saunders E.
        • Travers M.
        • Chen L.C.
        • Peltier R.
        • Gordon T.
        Air quality in New York City hookah bars.
        Tob Control. 2014; 24: e193-e198
        • Ayres S.M.
        • Giannelli Jr., S.
        • Mueller H.
        Myocardial and systemic responses to carboxyhemoglobin.
        Ann N Y Acad Sci. 1970; 174: 268-293
        • Anwar Y.A.
        • Tendler B.E.
        • McCabe E.J.
        • Mansoor G.A.
        • White W.B.
        Evaluation of the datascope accutorr plus according to the recommendations of the Association for the Advancement of Medical Instrumentation.
        Blood Press Monit. 1997; 2: 105-110
        • Gurudevan S.V.
        • Nelson M.D.
        • Rader F.
        • Tang X.
        • Lewis J.
        • Johannes J.
        • Belcik J.T.
        • Elashoff R.M.
        • Lindner J.R.
        • Victor R.G.
        Cocaine-induced vasoconstriction in the human coronary microcirculation: new evidence from myocardial contrast echocardiography.
        Circulation. 2013; 128: 598-604
        • Tang M.X.
        • Mulvana H.
        • Gauthier T.
        • Lim A.K.
        • Cosgrove D.O.
        • Eckersley R.J.
        • Stride E.
        Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability.
        Interface Focus. 2011; 1: 520-539
        • Wei K.
        • Jayaweera A.R.
        • Firoozan S.
        • Linka A.
        • Skyba D.M.
        • Kaul S.
        Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion.
        Circulation. 1998; 97: 473-483
        • Lang R.M.
        • Bierig M.
        • Devereux R.B.
        • Flachskampf F.A.
        • Foster E.
        • Pellikka P.A.
        • Picard M.H.
        • Roman M.J.
        • Seward J.
        • Shanewise J.S.
        • Solomon S.D.
        • Spencer K.T.
        • Sutton M.S.
        • Stewart W.J.
        • Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography
        Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.
        J Am Soc Echocardiogr. 2005; 18: 1440-1463
        • Rooke G.A.
        • Feigl E.O.
        Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting.
        Circ Res. 1982; 50: 273-286
      1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.
        Circulation. 1996; 93: 1043-1065
        • Vongpatanasin W.
        • Taylor J.A.
        • Victor R.G.
        Effects of cocaine on heart rate variability in healthy subjects.
        Am J Cardiol. 2004; 93: 385-388
        • Jacob III, P.
        • Yu L.
        • Wilson M.
        • Benowitz N.L.
        Selected ion monitoring method for determination of nicotine, cotinine and deuterium-labeled analogs: absence of an isotope effect in the clearance of (S)-nicotine-3',3'-d2 in humans.
        Biol Mass Spectrom. 1991; 20: 247-252
        • El-Zaatari Z.M.
        • Chami H.A.
        • Zaatari G.S.
        Health effects associated with waterpipe smoking.
        Tob Control. 2015; 24: i31-i43
        • Le D.E.
        • Bin J.P.
        • Coggins M.P.
        • Wei K.
        • Lindner J.R.
        • Kaul S.
        Relation between myocardial oxygen consumption and myocardial blood volume: a study using myocardial contrast echocardiography.
        J Am Soc Echocardiogr. 2002; 15: 857-863
        • Kleinert H.D.
        • Scales J.L.
        • Weiss H.R.
        Effects of carbon monoxide or low oxygen gas mixture inhalation on regional oxygenation, blood flow, and small vessel blood content of the rabbit heart.
        Pflugers Arch. 1980; 383: 105-111
        • Coogan P.F.
        • White L.F.
        • Jerrett M.
        • Brook R.D.
        • Su J.G.
        • Seto E.
        • Burnett R.
        • Palmer J.R.
        • Rosenberg L.
        Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles.
        Circulation. 2012; 125: 767-772
        • Maziak W.
        • Rastam S.
        • Ibrahim I.
        • Ward K.D.
        • Eissenberg T.
        Waterpipe-associated particulate matter emissions.
        Nicotine Tob Res. 2008; 10: 519-523
        • Cryer P.E.
        • Haymond M.W.
        • Santiago J.V.
        • Shah S.D.
        Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events.
        N Engl J Med. 1976; 295: 573-577
        • Barnett T.E.
        • Curbow B.A.
        • Soule Jr., E.K.
        • Tomar S.L.
        • Thombs D.L.
        Carbon monoxide levels among patrons of hookah cafes.
        Am J Prev Med. 2011; 40: 324-328
        • Torrey C.M.
        • Moon K.A.
        • Williams D.A.
        • Green T.
        • Cohen J.E.
        • Navas-Acien A.
        • Breysse P.N.
        Waterpipe cafes in Baltimore, Maryland: carbon monoxide, particulate matter, and nicotine exposure.
        J Expo Sci Environ Epidemiol. 2015; 25: 405-410
        • Nemmar A.
        • Hoet P.H.
        • Vanquickenborne B.
        • Dinsdale D.
        • Thomeer M.
        • Hoylaerts M.F.
        • Vanbilloen H.
        • Mortelmans L.
        • Nemery B.
        Passage of inhaled particles into the blood circulation in humans.
        Circulation. 2002; 105: 411-414