Advertisement

Reliability, Agreement, and Presentation of a Reference Standard for Assessing Implanted Heart Valve Sizes by Multidetector-Row Computed Tomography

      The implanted prosthetic heart valve (PHV) size is vital for the evaluation of suspected PHV dysfunction and in case of reoperation or valve-in-valve transcatheter approaches. The labeled size is not always known, and discrepancies exist between manufacturers' labeled sizes and true sizes. Reproducible methods for noninvasive PHV size assessment are lacking. We determined the reliability and agreement of PHV size measurements using multidetector-row computed tomography (MDCT) and provide reference values of MDCT measurements compared with manufacturer specifications. In vitro, 15 different PHV types in available sizes (total n = 63) were imaged. In vivo, available MDCT acquisitions of patients with PHVs were retrospectively gathered in 2 centers, and 230 patients with 249 PHVs were included. Inner valve area and area-derived diameter were measured in all PHVs. For mechanical PHVs, the inner diameter was also measured. Data were analyzed using the intraclass correlation coefficient and Bland-Altman plots and related to manufacturer specifications. Measurements could be obtained for all PHV types, except the Björk-Shiley (n = 7) because of severe valve-related artifacts hampering the image quality. Intrarater and interrater reliability was excellent for biological and mechanical PHVs (intraclass correlation coefficients ≥0.903). Agreement was good for all measurements with an overall maximal mean difference (95% confidence interval) of −2.61 mm2 (−37.9 to 32.7), −0.1 mm (−1.1 to 1.0), and 0 mm (−0.4 to 0.3) for valve area, area-derived diameter, and inner diameter, respectively. MDCT reliably discriminated consecutive PHV sizes as labeled by the manufacturer because the absolute ranges for the measurements never overlapped. In conclusion, MDCT allows assessment of the implanted PHV size with excellent reliability and agreement and can discriminate between PHV sizes for contemporary prostheses. MDCT can be used to noninvasively identify the manufacturer-labeled PHV size.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nishimura R.A.
        • Otto C.M.
        • Bonow R.O.
        • Carabello B.A.
        • Erwin J.P.
        • Guyton R.A.
        • O'Gara P.T.
        • Ruiz C.E.
        • Skubas N.J.
        • Sorajja P.
        • Sundt T.M.
        • Thomas J.D.
        • Anderson J.L.
        • Halperin J.L.
        • Albert N.M.
        • Bozkurt B.
        • Brindis R.G.
        • Creager M.A.
        • Curtis L.H.
        • DeMets D.
        • Hochman J.S.
        • Kovacs R.J.
        • Ohman E.M.
        • Pressler S.J.
        • Sellke F.W.
        • Shen W.K.
        • Stevenson W.G.
        • Yancy C.W.
        2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        J Thorac Cardiovasc Surg. 2014; 148: e1-e132
        • Zoghbi W.A.
        • Chambers J.B.
        • Dumesnil J.G.
        • Foster E.
        • Gottdiener J.S.
        • Grayburn P.A.
        • Khandheria B.K.
        • Levine R.A.
        • Marx G.R.
        • Miller Jr., F.A.
        • Nakatani S.
        • Quinones M.A.
        • Rakowski H.
        • Rodriguez L.L.
        • Swaminathan M.
        • Waggoner A.D.
        • Weissman N.J.
        • Zabalgoitia M.
        Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography.
        J Am Soc Echocardiogr. 2009; 22: 975-1014
        • Shibata T.
        • Inoue K.
        • Ikuta T.
        • Bito Y.
        • Yoshioka Y.
        • Mizoguchi H.
        Which valve and which size should we use in the valve-on-valve technique for re-do mitral valve surgery?.
        Interact Cardiovasc Thorac Surg. 2009; 8: 206-210
        • Chambers J.B.
        • Oo L.
        • Narracott A.
        • Lawford P.M.
        • Blauth C.I.
        Nominal size in six bileaflet mechanical aortic valves: a comparison of orifice size and biologic equivalence.
        J Thorac Cardiovasc Surg. 2003; 125: 1388-1393
        • Webb J.G.
        • Wood D.A.
        • Ye J.
        • Gurvitch R.
        • Masson J.B.
        • Rodes-Cabau J.
        • Osten M.
        • Horlick E.
        • Wendler O.
        • Dumont E.
        • Carere R.G.
        • Wijesinghe N.
        • Nietlispach F.
        • Johnson M.
        • Thompson C.R.
        • Moss R.
        • Leipsic J.
        • Munt B.
        • Lichtenstein S.V.
        • Cheung A.
        Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves.
        Circulation. 2010; 121: 1848-1857
        • Dvir D.
        • Webb J.
        • Brecker S.
        • Bleiziffer S.
        • Hildick-Smith D.
        • Colombo A.
        • Descoutures F.
        • Hengstenberg C.
        • Moat N.E.
        • Bekeredjian R.
        • Napodano M.
        • Testa L.
        • Lefevre T.
        • Guetta V.
        • Nissen H.
        • Hernandez J.M.
        • Roy D.
        • Teles R.C.
        • Segev A.
        • Dumonteil N.
        • Fiorina C.
        • Gotzmann M.
        • Tchetche D.
        • Abdel-Wahab M.
        • De Marco F.
        • Baumbach A.
        • Laborde J.C.
        • Kornowski R.
        Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry.
        Circulation. 2012; 126: 2335-2344
        • Seiffert M.
        • Conradi L.
        • Baldus S.
        • Knap M.
        • Schirmer J.
        • Franzen O.
        • Koschyk D.
        • Meinertz T.
        • Reichenspurner H.
        • Treede H.
        Impact of patient-prosthesis mismatch after transcatheter aortic valve-in-valve implantation in degenerated bioprostheses.
        J Thorac Cardiovasc Surg. 2012; 143: 617-624
        • Christakis G.T.
        • Buth K.J.
        • Goldman B.S.
        • Fremes S.E.
        • Rao V.
        • Cohen G.
        • Borger M.A.
        • Weisel R.D.
        Inaccurate and misleading valve sizing: a proposed standard for valve size nomenclature.
        Ann Thorac Surg. 1998; 66: 1198-1203
        • Doenst T.
        • Amorim P.A.
        • Al-Alam N.
        • Lehmann S.
        • Mukherjee C.
        • Faerber G.
        Where is the common sense in aortic valve replacement? A review of hemodynamics and sizing of stented tissue valves.
        J Thorac Cardiovasc Surg. 2011; 142: 1180-1187
        • Ng A.C.
        • Delgado V.
        • van der Kley F.
        • Shanks M.
        • van de Veire N.R.
        • Bertini M.
        • Nucifora G.
        • van Bommel R.J.
        • Tops L.F.
        • de Weger A.
        • Tavilla G.
        • de Roos A.
        • Kroft L.J.
        • Leung D.Y.
        • Schuijf J.
        • Schalij M.J.
        • Bax J.J.
        Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography.
        Circ Cardiovasc Imaging. 2010; 3: 94-102
        • Imran Hamid U.
        • Digney R.
        • Soo L.
        • Leung S.
        • Graham A.N.
        Incidence and outcome of re-entry injury in redo cardiac surgery: benefits of preoperative planning.
        Eur J Cardiothorac Surg. 2015; 47: 819-823
        • Kamdar A.R.
        • Meadows T.A.
        • Roselli E.E.
        • Gorodeski E.Z.
        • Curtin R.J.
        • Sabik J.F.
        • Schoenhagen P.
        • White R.D.
        • Lytle B.W.
        • Flamm S.D.
        • Desai M.Y.
        Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery.
        Ann Thorac Surg. 2008; 85: 1239-1245
        • LaBounty T.M.
        • Agarwal P.P.
        • Chughtai A.
        • Bach D.S.
        • Wizauer E.
        • Kazerooni E.A.
        Evaluation of mechanical heart valve size and function with ECG-gated 64-MDCT.
        AJR Am J Roentgenol. 2009; 193: W389-W396
        • Lee D.H.
        • Youn H.J.
        • Shim S.B.
        • Lee S.H.
        • Jung J.I.
        • Jung S.E.
        • Choi Y.S.
        • Park C.S.
        • Oh Y.S.
        • Chung W.S.
        • Kim J.H.
        The measurement of opening angle and orifice area of a bileaflet mechanical valve using multidetector computed tomography.
        Korean Circ J. 2009; 39: 157-162
        • Bazeed M.F.
        • Moselhy M.S.
        • Rezk A.I.
        • Al-Murayeh M.A.
        Low radiation dose non-contrast cardiac CT: is it of value in the evaluation of mechanical aortic valve.
        Acta Radiol. 2012; 53: 389-393
        • Chenot F.
        • Montant P.
        • Goffinet C.
        • Pasquet A.
        • Vancraeynest D.
        • Coche E.
        • Vanoverschelde J.L.
        • Gerber B.L.
        Evaluation of anatomic valve opening and leaflet morphology in aortic valve bioprosthesis by using multidetector CT: comparison with transthoracic echocardiography.
        Radiology. 2010; 255: 377-385
        • Bapat V.N.
        • Attia R.
        • Thomas M.
        Effect of valve design on the stent internal diameter of a bioprosthetic valve: a concept of true internal diameter and its implications for the valve-in-valve procedure.
        JACC Cardiovasc Interv. 2014; 7: 115-127
        • Bapat V.
        • Davies W.
        • Attia R.
        • Hancock J.
        • Bolter K.
        • Young C.
        • Redwood S.
        • Thomas M.
        Use of balloon expandable transcatheter valves for valve-in-valve implantation in patients with degenerative stentless aortic bioprostheses: technical considerations and results.
        J Thorac Cardiovasc Surg. 2014; 148: 917-924
        • Tsai I.C.
        • Lin Y.K.
        • Chang Y.
        • Fu Y.C.
        • Wang C.C.
        • Hsieh S.R.
        • Wei H.J.
        • Tsai H.W.
        • Jan S.L.
        • Wang K.Y.
        • Chen M.C.
        • Chen C.C.
        Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard.
        Eur Radiol. 2009; 19: 857-867