Advertisement

Prognostic Value of the Age, Creatinine, and Ejection Fraction Score for 1-Year Mortality in 30-Day Survivors Who Underwent Percutaneous Coronary Intervention After Acute Myocardial Infarction

Published:February 11, 2015DOI:https://doi.org/10.1016/j.amjcard.2015.02.001
      Few simple and effective tools are available for determining the prognosis of 30-day survivors after acute myocardial infarction. We aimed to assess whether the simple age, creatinine, and ejection fraction (ACEF) score could predict 1-year mortality of 12,000 post–myocardial infarction 30-day survivors who underwent percutaneous coronary intervention. The ACEF score was computed as follows: (age/ejection fraction) + 1, if the serum creatinine was >2 mg/dl. Accuracy was defined through receiver-operating characteristics analysis and area under the curve (AUC) evaluation. Twelve risk factors were selected and ranked according to their AUC value. Age, ejection fraction, and serum creatinine levels indicated the best AUC value. The ACEF score was significantly higher in the nonsurvivors (1.95 ± 0.82 vs 1.28 ± 0.50; p <0.001) and was an independent predictor of 1-year mortality (adjusted hazard ratio 2.26; p <0.001). The best accuracy was achieved by a prediction model including 12 risk factors (AUC = 0.80), but this did not significantly differ compared with the AUC (0.79) of the ACEF score (p = ns). Adjusted hazard ratios for 1-year mortality were 1 (reference), 3.11 (p <0.001), and 10.38 (p <0.001) for the ACEFLOW (ACEF score <1.0), ACEFMID (ACEF score 1.0 to 1.39), and ACEFHIGH (ACEF score ≥1.4) groups, respectively. The ACEF score may be a novel valid model to stratify the 1-year mortality risk in 30-day survivors who underwent percutaneous coronary intervention after acute myocardial infarction.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee J.H.
        • Park H.S.
        • Chae S.C.
        • Cho Y.
        • Yang D.H.
        • Jeong M.H.
        • Kim Y.J.
        • Kim K.S.
        • Hur S.H.
        • Seong I.W.
        • Hong T.J.
        • Cho M.C.
        • Kim C.J.
        • Jun J.E.
        • Park W.H.
        • Korea Acute Myocardial Infarction Registry Investigators
        Predictors of six-month major adverse cardiac events in 30-day survivors after acute myocardial infarction (from the Korea Acute Myocardial Infarction Registry).
        Am J Cardiol. 2009; 104: 182-189
        • Califf R.M.
        • Pieper K.S.
        • Lee K.L.
        • Van De Werf F.
        • Simes R.J.
        • Armstrong P.W.
        • Topol E.J.
        Prediction of 1-year survival after thrombolysis for acute myocardial infarction in the global utilization of streptokinase and TPA for occluded coronary arteries trial.
        Circulation. 2000; 101: 2231-2238
        • Mehta R.H.
        • O'neill W.W.
        • Harjai K.J.
        • Cox D.A.
        • Brodie B.R.
        • Boura J.
        • Grines L.
        • Stone G.W.
        • Grines C.L.
        • Primary Angioplasty in Myocardial Infarction (PAMI) and the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) Investigators
        Prediction of one-year mortality among 30-day survivors after primary percutaneous coronary interventions.
        Am J Cardiol. 2006; 97: 817-822
        • Ranucci M.
        • Castelvecchio S.
        • Menicanti L.
        • Frigiola A.
        • Pelissero G.
        Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony.
        Circulation. 2009; 119: 3053-3061
        • Wykrzykowska J.J.
        • Garg S.
        • Onuma Y.
        • de Vries T.
        • Goedhart D.
        • Morel M.A.
        • van Es G.A.
        • Buszman P.
        • Linke A.
        • Ischinger T.
        • Klauss V.
        • Corti R.
        • Eberli F.
        • Wijns W.
        • Morice M.C.
        • di Mario C.
        • van Geuns R.J.
        • Juni P.
        • Windecker S.
        • Serruys P.W.
        Value of age, creatinine, and ejection fraction (ACEF score) in assessing risk in patients undergoing percutaneous coronary interventions in the 'All-Comers' LEADERS trial.
        Circ Cardiovasc Interv. 2011; 4: 47-56
        • Lee J.H.
        • Yang D.H.
        • Park H.S.
        • Cho Y.
        • Jeong M.H.
        • Kim Y.J.
        • Kim K.S.
        • Hur S.H.
        • Seong I.W.
        • Hong T.J.
        • Cho M.C.
        • Kim C.J.
        • Jun J.E.
        • Park W.H.
        • Chae S.C.
        • Korea Acute Myocardial Infarction Registry Investigators
        Suboptimal use of evidence-based medical therapy in patients with acute myocardial infarction from the Korea Acute Myocardial Infarction Registry: prescription rate, predictors, and prognostic value.
        Am Heart J. 2010; 159: 1012-1019
        • Alpert J.S.
        • Thygesen K.
        • Antman E.
        • Bassand J.P.
        Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.
        J Am Coll Cardiol. 2000; 36: 959-969
        • Youden W.J.
        An index for rating diagnostic tests.
        Cancer. 1950; 3: 32-35
        • DeLong E.R.
        • DeLong D.M.
        • Clarke-Pearson D.L.
        Comparing the areas under two or more correlated ROC-curves: a non-parametric approach.
        Biometrics. 1988; 443: 837-845
        • Granger C.B.
        • Goldberg R.J.
        • Dabbous O.
        • Pieper K.S.
        • Eagle K.A.
        • Cannon C.P.
        • Van De Werf F.
        • Avezum A.
        • Goodman S.G.
        • Flather M.D.
        • Fox K.A.
        • Global Registry of Acute Coronary Events Investigators
        Predictors of hospital mortality in the global registry of acute coronary events.
        Arch Intern Med. 2003; 163: 2345-2353
        • Antman E.M.
        • Cohen M.
        • Bernink P.J.
        • McCabe C.H.
        • Horacek T.
        • Papuchis G.
        • Mautner B.
        • Corbalan R.
        • Radley D.
        • Braunwald E.
        The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making.
        JAMA. 2000; 284: 835-842
        • Nashef S.A.
        • Roques F.
        • Michel P.
        • Gauducheau E.
        • Lemeshow S.
        • Salamon R.
        European system for cardiac operative risk evaluation (EuroSCORE).
        Eur J Cardiothorac Surg. 1999; 16: 9-13
        • Sianos G.
        • Morel M.A.
        • Kappetein A.P.
        • Morice M.C.
        • Colombo A.
        • Dawkins K.
        • van den Brand M.
        • Van Dyck N.
        • Russell M.E.
        • Mohr F.W.
        • Serruys P.W.
        The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease.
        EuroIntervention. 2005; 1: 219-227
        • Wykrzykowska J.J.
        • Garg S.
        • Girasis C.
        • de Vries T.
        • Morel M.A.
        • van Es G.A.
        • Buszman P.
        • Linke A.
        • Ischinger T.
        • Klauss V.
        • Corti R.
        • Eberli F.
        • Wijns W.
        • Morice M.C.
        • di Mario C.
        • van Geuns R.J.
        • Juni P.
        • Windecker S.
        • Serruys P.W.
        Value of the SYNTAX score for risk assessment in the all-comers population of the randomized multicenter LEADERS (Limus Eluted from A Durable versus ERodable Stent coating) trial.
        J Am Coll Cardiol. 2010; 56: 272-277
        • Garg S.
        • Sarno G.
        • Garcia-Garcia H.M.
        • Girasis C.
        • Wykrzykowska J.
        • Dawkins K.D.
        • Serruys P.W.
        • ARTS-II Investigators
        A new tool for the risk stratification of patients with complex coronary artery disease: the clinical SYNTAX score.
        Circ Cardiovasc Interv. 2010; 3: 317-326
        • Feldman D.N.
        • Gade C.L.
        • Slotwiner A.J.
        • Parikh M.
        • Bergman G.
        • Wong S.C.
        • Minutello R.M.
        • New York State Angioplasty Registry
        Comparison of outcomes of percutaneous coronary interventions in patients of three age groups (<60, 60 to 80, and >80 years) (from the New York State Angioplasty Registry).
        Am J Cardiol. 2006; 98: 1334-1339
        • Sadeghi H.M.
        • Stone G.W.
        • Grines C.L.
        • Mehran R.
        • Dixon S.R.
        • Lansky A.J.
        • Fahy M.
        • Cox D.A.
        • Garcia E.
        • Tcheng J.E.
        • Griffin J.J.
        • Stuckey T.D.
        • Turco M.
        • Carroll J.D.
        Impact of renal insufficiency in patients undergoing primary angioplasty for acute myocardial infarction.
        Circulation. 2003; 108: 2769-2775
        • Keelan P.C.
        • Johnston J.M.
        • Koru-Sengul T.
        • Detre K.M.
        • Williams D.O.
        • Slater J.
        • Block P.C.
        • Holmes Jr., D.R.
        • Dynamic Registry Investigators
        Comparison of in-hospital and one-year outcomes in patients with left ventricular ejection fractions <or=40%, 41% to 49%, and >or=50% having percutaneous coronary revascularization.
        Am J Cardiol. 2003; 91: 1168-1172
        • Concato J.
        • Feinstein A.R.
        • Holford T.
        The risk of determining risk with multivariable models.
        Ann Intern Med. 1993; 118: 201-210
        • Neal R.M.
        Bayesian Learning for Neural Networks.
        Springer-Verlag, New York, NY1996
        • Wells C.K.
        • Feinstein A.R.
        • Walter S.D.
        A comparison of multivariable mathematical methods for predicting survival, III: accuracy of predictions in generating and challenge sets.
        J Clin Epidemiol. 1990; 43: 361-372
        • Ouattara A.
        • Niculescu M.
        • Ghazouani S.
        • Babolian A.
        • Landi M.
        • Lecomte P.
        • Boccara G.
        • Varnous S.
        • Leprince P.
        • Riou B.
        • Coriat P.
        Predictive performance and variability of the cardiac anesthesia risk evaluation score.
        Anesthesiology. 2004; 100: 1405-1410
        • Soreide K.
        Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research.
        J Clin Pathol. 2009; 62: 1-5