Comparison of Three-Dimensional Echocardiographic Findings to Those of Magnetic Resonance Imaging for Determination of Left Ventricular Mass in Patients With Ischemic and Non-Ischemic Cardiomyopathy

      The standard echocardiographic evaluation of left ventricular (LV) mass, particularly in ischemic cardiomyopathy (IC) is challenging because it is based on geometric assumptions. The aim of this study was to assess the accuracy of LV mass calculation using echocardiographic modalities compared with cardiac magnetic resonance (CMR) in IC and in nonischemic cardiomyopathy (non-IC). Echocardiography was performed in 104 patients (mean age 55 ± 15 years) referred for CMR: 63 with IC and 41 with non-IC. CMR, M-mode echocardiography, 2-dimensional echocardiography, and 3-dimensional echocardiography (3DE) were analyzed using standard commercial tools to obtain LV mass. LV mass on 3DE showed a higher correlation with CMR than 2-dimensional echocardiography (r = 0.87 vs r = 0.70, p <0.001). M-mode echocardiography overestimated LV mass (bias +30%) and 2-dimensional echocardiography underestimated LV mass (bias −11%), whereas measurements on 3DE showed only minimal bias (−2%). LV mass on 3DE in non-IC showed a significantly higher correlation with CMR than in IC (r = 0.92 vs r = 0.84, z = 2.3, p <0.05). In non-IC, the mean difference was −2 g (−1% of the mean), with 95% limits of agreement of ±33 g (±19% of the mean). In IC, the mean difference was −7 g (−4% of the mean), with limits of agreement of ±56 g (±31% of the mean). There was a correlation between the absolute LV mass differences (3DE derived and CMR derived) and scar percentage (infarcted mass/total LV mass) using delayed-hyperenhancement images (r = 0.40, p <0.05). The net reclassification index with 3DE was +16% for concentric LV hypertrophy. In conclusion, the most accurate and reliable echocardiographic measurement of LV mass is 3DE, but underestimation and variability remain challenges in IC.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Opie L.H.
        • Commerford P.J.
        • Gersh B.J.
        • Pfeffer M.A.
        Controversies in ventricular remodelling.
        Lancet. 2006; 367: 356-367
        • Konstam M.A.
        • Kramer D.G.
        • Patel A.R.
        • Maron M.S.
        • Udelson J.E.
        Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment.
        JACC Cardiovasc Imaging. 2011; 4: 98-108
        • Verma A.
        • Anavekar N.S.
        • Meris A.
        • Thune J.J.
        • Arnold J.M.O.
        • Ghali J.K.
        • Velazquez E.J.
        • McMurray J.J.V.
        • Pfeffer M.A.
        • Solomon S.D.
        The relationship between renal function and cardiac structure, function, and prognosis after myocardial infarction.
        J Am Coll Cardiol. 2007; 50: 1238-1245
        • Verma A.
        • Meris A.
        • Skali H.
        • Ghali J.
        • Arnold J.
        • Bourgoun M.
        • Velazquez E.
        • McMurray J.
        • Kober L.
        • Pfeffer M.
        Prognostic Implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (Valsartan in Acute Myocardial Infarction) echocardiographic study.
        JACC Cardiovasc Imaging. 2008; 1: 582-591
        • Perdrix L.
        • Mansencal N.
        • Cocheteux B.
        • Chatellier G.
        • Bissery A.
        • Diebold B.
        • Mousseaux E.
        • Abergel E.
        How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study.
        Arch Cardiovasc Dis. 2011; 104: 343-351
        • Gupta S.
        • Berry J.D.
        • Ayers C.R.
        • Peshock R.M.
        • Khera A.
        • de Lemos J.A.
        • Patel P.C.
        • Markham D.W.
        • Drazner M.H.
        Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease: the Dallas Heart Study.
        JACC Cardiovasc Imaging. 2010; 3: 605-613
        • Bluemke D.A.
        • Kronmal R.A.
        • Lima J.A.
        • Liu K.
        • Olson J.
        • Burke G.L.
        • Folsom A.R.
        The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study.
        J Am Coll Cardiol. 2008; 52: 2148-2155
        • Jenkins C.
        • Bricknell K.
        • Hanekom L.
        • Marwick T.H.
        Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography.
        J Am Coll Cardiol. 2004; 44: 878-886
        • Mor-Avi V.
        • Sugeng L.
        • Weinert L.
        • MacEneaney P.
        • Caiani E.G.
        • Koch R.
        • Salgo I.S.
        • Lang R.M.
        Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging.
        Circulation. 2004; 110: 1814-1818
        • Oe H.
        • Hozumi T.
        • Arai K.
        • Matsumura Y.
        • Negishi K.
        • Sugioka K.
        • Ujino K.
        • Takemoto Y.
        • Inoue Y.
        • Yoshikawa J.
        Comparison of accurate measurement of left ventricular mass in patients with hypertrophied hearts by real-time three-dimensional echocardiography versus magnetic resonance imaging.
        Am J Cardiol. 2005; 95: 1263-1267
        • Caiani E.G.
        • Corsi C.
        • Sugeng L.
        • MacEneaney P.
        • Weinert L.
        • Mor-Avi V.
        • Lang R.M.
        Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography.
        Heart. 2006; 92: 213-219
        • Lenstrup M.
        • Kjaergaard J.
        • Petersen C.L.
        • Kjaer A.
        • Hassager C.
        Evaluation of left ventricular mass measured by 3D echocardiography using magnetic resonance imaging as gold standard.
        Scand J Clin Lab Invest. 2006; 66: 647-658
        • van den Bosch A.E.
        • Robbers-Visser D.
        • Krenning B.J.
        • McGhie J.S.
        • Helbing W.A.
        • Meijboom F.J.
        • Roos-Hesselink J.W.
        Comparison of real-time three-dimensional echocardiography to magnetic resonance imaging for assessment of left ventricular mass.
        Am J Cardiol. 2006; 97: 113-117
        • Chuang M.L.
        • Salton C.J.
        • Hibberd M.G.
        • Manning W.J.
        • Douglas P.S.
        Relation between number of component views and accuracy of left ventricular mass determined by three-dimensional echocardiography.
        Am J Cardiol. 2007; 99: 1321-1324
        • Yap S.
        • Vangeuns R.
        • Nemes A.
        • Meijboom F.
        • McGhie J.
        • Geleijnse M.
        • Simoons M.
        • Rooshesselink J.
        Rapid and accurate measurement of LV mass by biplane real-time 3D echocardiography in patients with concentric LV hypertrophy: comparison to CMR.
        Eur J Echocardiogr. 2008; 9: 255-260
        • Bicudo L.S.
        • Tsutsui J.M.
        • Shiozaki A.
        • Rochitte C.E.
        • Arteaga E.
        • Mady C.
        • Ramires J.A.F.
        • Mathias Jr., W.
        Value of real time three-dimensional echocardiography in patients with hypertrophic cardiomyopathy: comparison with two-dimensional echocardiography and magnetic resonance imaging.
        Echocardiography. 2008; 25: 717-726
        • Lu X.
        • Xie M.
        • Tomberlin D.
        • Klas B.
        • Nadvoretskiy V.
        • Ayres N.
        • Towbin J.
        • Ge S.
        How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children?.
        Am Heart J. 2008; 155: 946-953
        • Pouleur A.C.
        • le Polain de Waroux J.B.
        • Pasquet A.
        • Gerber B.L.
        • Gerard O.
        • Allain P.
        • Vanoverschelde J.L.J.
        Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging.
        Heart. 2008; 94: 1050-1057
        • Riehle T.J.
        • Mahle W.T.
        • Parks W.J.
        • Sallee D.
        • Fyfe D.A.
        Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging.
        J Am Soc Echocardiogr. 2008; 21: 78-83
        • Takeuchi M.
        • Nishikage T.
        • Mor-Avi V.
        • Sugeng L.
        • Weinert L.
        • Nakai H.
        • Salgo I.S.
        • Gerard O.
        • Lang R.M.
        Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and M-mode measurements.
        J Am Soc Echocardiogr. 2008; 21: 1001-1005
        • Kwon D.H.
        • Hachamovitch R.
        • Popovic Z.B.
        • Starling R.C.
        • Desai M.Y.
        • Flamm S.D.
        • Lytle B.W.
        • Marwick T.H.
        Survival in patients with severe ischemic cardiomyopathy undergoing revascularization versus medical therapy: association with end-systolic volume and viability.
        Circulation. 2012; 126: S3-S8
        • Lang R.M.
        • Bierig M.
        • Devereux R.B.
        • Flachskampf F.A.
        • Foster E.
        • Pellikka P.A.
        • Picard M.H.
        • Roman M.J.
        • Seward J.
        • Shanewise J.S.
        • Solomon S.D.
        • Spencer K.T.
        • Sutton M.S.
        • Stewart W.J.
        • Chamber Quantification Writing Group
        • American Society of Echocardiography's Guidelines and Standards Committee
        • European Association of Echocardiography
        Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.
        J Am Soc Echocardiogr. 2005; 18: 1440-1463
        • Drazner M.H.
        • Dries D.L.
        • Peshock R.M.
        • Cooper R.S.
        • Klassen C.
        • Kazi F.
        • Willett D.
        • Victor R.G.
        Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study.
        Hypertension. 2005; 46: 124-129
        • Khouri M.G.
        • Peshock R.M.
        • Ayers C.R.
        • de Lemos J.A.
        • Drazner M.H.
        A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas Heart Study.
        Circ Cardiovasc Imaging. 2010; 3: 164-171
        • Bland J.M.
        • Altman D.G.
        Calculating correlation coefficients with repeated observations: part 1—correlation within subjects.
        BMJ. 1995; 310: 446
        • Pencina M.J.
        • D'Agostino Sr., R.B.
        • D'Agostino Jr., R.B.
        • Vasan R.S.
        Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond.
        Stat Med. 2008; 27: 157-172
        • Shimada Y.J.
        • Shiota T.
        Meta-analysis of accuracy of left ventricular mass measurement by three-dimensional echocardiography.
        Am J Cardiol. 2012; 110: 445-452