Advertisement
Coronary artery disease| Volume 111, ISSUE 10, P1420-1424, May 15, 2013

Relation of Distribution of Coronary Blood Flow Volume to Coronary Artery Dominance

      Coronary artery dominance influences the amount and anatomic location of myocardium that is perfused by the left or right coronary circulation. However, it is unknown whether coronary artery dominance also influences the distribution of coronary blood flow volume. The aim of this study was to evaluate volumetric coronary blood flow in 1,322 vessels from 496 patients in the Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Wall Morphology (PREDICTION) study. Patients were divided into 2 groups (right-dominant and left-dominant or balanced circulation). Coronary blood flow volume was calculated by coronary segment volume measurement using angiography and intravascular ultrasound and the contrast transit time through the segment. Coronary blood flow in the left circumflex coronary artery was significantly higher in left-dominant or balanced circulation than in right-dominant circulation (113 ± 43 vs 72 ± 37 ml/min, p <0.001), whereas flow in the right coronary artery was significantly lower in left-dominant or balanced circulation than in right-dominant circulation (56 ± 40 vs 113 ± 49 ml/min, p = 0.003). There was no significant difference in the left anterior descending coronary artery. In conclusion, coronary artery dominance has an impact on coronary blood flow volume in the left circumflex and right coronary arteries but not in the left anterior descending coronary artery. These findings suggest that the extent of myocardial perfusion area is associated with coronary blood flow volume.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bing R.J.
        • Rickart A.
        • Hellberg K.
        Techniques to measure coronary blood flow in man.
        Am J Cardiol. 1972; 29: 75-80
        • Labovitz A.J.
        • Anthonis D.M.
        • Cravens T.L.
        • Kern M.J.
        Validation of volumetric flow measurements by means of a Doppler-tipped coronary angioplasty guide wire.
        Am Heart J. 1993; 126: 1456-1461
        • Kaufmann P.A.
        • Namdar M.
        • Matthew F.
        • Roffi M.
        • Aschkenasy S.V.
        • van der Loo B.
        • Sutsch G.
        • Luscher T.F.
        • Jenni R.
        Novel Doppler assessment of intracoronary volumetric flow reserve: validation against PET in patients with or without flow-dependent vasodilation.
        J Nucl Med. 2005; 46: 1272-1277
        • Aarnoudse W.
        • Van't Veer M.
        • Pijls N.H.
        • Ter Woorst J.
        • Vercauteren S.
        • Tonino P.
        • Geven M.
        • Rutten M.
        • van Hagen E.
        • de Bruyne B.
        • van de Vosse F.
        Direct volumetric blood flow measurement in coronary arteries by thermodilution.
        J Am Coll Cardiol. 2007; 50: 2294-2304
        • Kalbfleisch H.
        • Hort W.
        Quantitative study on the size of coronary artery supplying areas postmortem.
        Am Heart J. 1977; 94: 183-188
        • Stone P.H.
        • Coskun A.U.
        • Kinlay S.
        • Clark M.E.
        • Sonka M.
        • Wahle A.
        • Ilegbusi O.J.
        • Yeghiazarians Y.
        • Popma J.J.
        • Orav J.
        • Kuntz R.E.
        • Feldman C.L.
        Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study.
        Circulation. 2003; 108: 438-444
        • Coskun A.U.
        • Yeghiazarians Y.
        • Kinlay S.
        • Clark M.E.
        • Ilegbusi O.J.
        • Wahle A.
        • Sonka M.
        • Popma J.J.
        • Kuntz R.E.
        • Feldman C.L.
        • Stone P.H.
        Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans.
        Catheter Cardiovasc Interv. 2003; 60: 67-78
        • Chatzizisis Y.S.
        • Baker A.B.
        • Sukhova G.K.
        • Koskinas K.C.
        • Papafaklis M.I.
        • Beigel R.
        • Jonas M.
        • Coskun A.U.
        • Stone B.V.
        • Maynard C.
        • Shi G.P.
        • Libby P.
        • Feldman C.L.
        • Edelman E.R.
        • Stone P.H.
        Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs.
        Circulation. 2011; 123: 621-630
        • Stone P.H.
        • Saito S.
        • Takahashi S.
        • Makita Y.
        • Nakamura S.
        • Kawasaki T.
        • Takahashi A.
        • Katsuki T.
        • Namiki A.
        • Hirohata A.
        • Matsumura T.
        • Yamazaki S.
        • Yokoi H.
        • Tanaka S.
        • Otsuji S.
        • Yoshimachi F.
        • Honye J.
        • Harwood D.
        • Reitman M.
        • Coskun A.U.
        • Papafaklis M.I.
        • Feldman C.L.
        Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study.
        Circulation. 2012; 126: 172-181
        • Schlesinger M.J.
        Relation of anatomic pattern to pathologic conditions of the coronary arteries.
        Arch Pathol. 1940; 30: 403-415
        • Higgins C.B.
        • Wexler L.
        Reversal of dominance of the coronary arterial system in isolated aortic stenosis and bicuspid aortic valve.
        Circulation. 1975; 52: 292-296
        • Uren N.G.
        • Melin J.A.
        • De Bruyne B.
        • Wijns W.
        • Baudhuin T.
        • Camici P.G.
        Relation between myocardial blood flow and the severity of coronary-artery stenosis.
        N Engl J Med. 1994; 330: 1782-1788
        • Marcus M.L.
        • Wilson R.F.
        • White C.W.
        Methods of measurement of myocardial blood flow in patients: a critical review.
        Circulation. 1987; 76: 245-253
        • Sudhir K.
        • Hargrave V.K.
        • Johnson E.L.
        • Aldea G.
        • Mori H.
        • Ports T.A.
        • Yock P.G.
        Measurement of volumetric coronary blood flow with a Doppler catheter: validation in an animal model.
        Am Heart J. 1992; 124: 870-875
        • Molloi S.
        • Ersahin A.
        • Tang J.
        • Hicks J.
        • Leung C.Y.
        Quantification of volumetric coronary blood flow with dual-energy digital subtraction angiography.
        Circulation. 1996; 93: 1919-1927
        • Slager C.J.
        • Wentzel J.J.
        • Schuurbiers J.C.
        • Oomen J.A.
        • Kloet J.
        • Krams R.
        • von Birgelen C.
        • van der Giessen W.J.
        • Serruys P.W.
        • de Feyter P.J.
        True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation.
        Circulation. 2000; 102: 511-516
        • Gibson C.M.
        • Cannon C.P.
        • Daley W.L.
        • Dodge Jr., J.T.
        • Alexander Jr., B.
        • Marble S.J.
        • McCabe C.H.
        • Raymond L.
        • Fortin T.
        • Poole W.K.
        • Braunwald E.
        TIMI frame count: a quantitative method of assessing coronary artery flow.
        Circulation. 1996; 93: 879-888
        • Akyurek O.
        • Berkalp B.
        • Sayin T.
        • Kumbasar D.
        • Kervancioglu C.
        • Oral D.
        Altered coronary flow properties in diffuse coronary artery ectasia.
        Am Heart J. 2003; 145: 66-72
        • Wieneke H.
        • von Birgelen C.
        • Haude M.
        • Eggebrecht H.
        • Mohlenkamp S.
        • Schmermund A.
        • Bose D.
        • Altmann C.
        • Bartel T.
        • Erbel R.
        Determinants of coronary blood flow in humans: quantification by intracoronary Doppler and ultrasound.
        J Appl Physiol. 2005; 98: 1076-1082
        • Anderson H.V.
        • Stokes M.J.
        • Leon M.
        • Abu-Halawa S.A.
        • Stuart Y.
        • Kirkeeide R.L.
        Coronary artery flow velocity is related to lumen area and regional left ventricular mass.
        Circulation. 2000; 102: 48-54
        • Tanedo J.S.
        • Kelly R.F.
        • Marquez M.
        • Burns D.E.
        • Klein L.W.
        • Costanzo M.R.
        • Parrillo J.E.
        • Hollenberg S.M.
        Assessing coronary blood flow dynamics with the TIMI frame count method: comparison with simultaneous intracoronary Doppler and ultrasound.
        Catheter Cardiovasc Interv. 2001; 53: 459-463
        • Cademartiri F.
        • La Grutta L.
        • Malago R.
        • Alberghina F.
        • Meijboom W.B.
        • Pugliese F.
        • Maffei E.
        • Palumbo A.A.
        • Aldrovandi A.
        • Fusaro M.
        • Brambilla V.
        • Coruzzi P.
        • Midiri M.
        • Mollet N.R.
        • Krestin G.P.
        Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography.
        Eur Radiol. 2008; 18: 781-791
        • Abaci A.
        • Oguzhan A.
        • Eryol N.K.
        • Ergin A.
        Effect of potential confounding factors on the Thrombolysis In Myocardial Infarction (TIMI) trial frame count and its reproducibility.
        Circulation. 1999; 100: 2219-2223