Effects of Curcuminoids on Frequency of Acute Myocardial Infarction After Coronary Artery Bypass Grafting

      It is well established that myocardial infarction (MI) associated with coronary artery bypass grafting (CABG) predicts a poor outcome. Nevertheless, cardioprotective therapies to limit myocardial injury after CABG are lacking. Previous studies have shown that curcuminoids decrease proinflammatory cytokines during cardiopulmonary bypass surgery and decrease the occurrence of cardiomyocytic apoptosis after cardiac ischemia/reperfusion injury in animal models. We aimed to evaluate whether curcuminoids prevent MI after CABG compared to placebo. The 121 consecutive patients undergoing CABG were randomly allocated to receive placebo or curcuminoids 4 g/day beginning 3 days before the scheduled surgery and continued until 5 days after surgery. The primary end point was incidence of in-hospital MI. The secondary end point was the effect of curcuminoids on C-reactive protein, plasma malondialdehyde, and N-terminal pro–B-type natriuretic peptide levels. Baseline characteristics were comparable between the curcuminoid and placebo groups. Mean age was 61 ± 9 years. On-pump CABG procedures were performed in 51.2% of patients. Incidence of in-hospital MI was decreased from 30.0% in the placebo group to 13.1% in the curcuminoid group (adjusted hazard ratio 0.35, 0.13 to 0.95, p = 0.038). Postoperative C-reactive protein, malondialdehyde, and N-terminal pro–B-type natriuretic peptide levels were also lower in the curcuminoid than in the placebo group. In conclusion, we demonstrated that curcuminoids significantly decreased MI associated with CABG. The antioxidant and anti-inflammatory effects of curcuminoids may account for their cardioprotective effects shown in this study.
      To read this article in full you will need to make a payment

      References

        • Kiuchi F.
        • Goto Y.
        • Sugimoto N.
        • Akao N.
        • Kondo K.
        • Tsuda Y.
        Nematocidal activity of turmeric: synergistic action of curcuminoids.
        Chem Pharm Bull. 1993; 41: 1640-1643
        • Goel A.
        • Kunnumakkara A.B.
        • Aggarwal B.B.
        Curcumin as “Curecumin”: from kitchen to clinic.
        Biochem Pharmacol. 2008; 75: 787-809
        • Yeh C.H.
        • Chen T.P.
        • Wu Y.C.
        • Lin Y.M.
        • Jing Lin P.
        Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion.
        J Surg Res. 2005; 125: 109-116
        • Nirmala C.
        • Puvanakrishnan R.
        Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats.
        Biochem Pharmacol. 1996; 51: 47-51
        • Srivastava R.
        • Srimal R.C.
        Modification of certain inflammation-induced biochemical changes by curcumin.
        Indian J Med Res. 1985; 81: 215-223
        • Winter C.A.
        Nonsteroid anti-inflammatory agents.
        Annu Rev Pharmacol. 1966; 6: 157-174
        • Mentzer Jr, R.M.
        • Bartels C.
        • Bolli R.
        • Boyce S.
        • Buckberg G.D.
        • Chaitman B.
        • Haverich A.
        • Knight J.
        • Menasché P.
        • Myers M.L.
        • Nicolau J.
        • Simoons M.
        • Thulin L.
        • Weisel R.D.
        • EXPEDITION Study Investigators
        Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study.
        Ann Thorac Surg. 2008; 85: 1261-1270
        • Thygesen K.
        • Alpert J.S.
        • White H.D.
        • Jaffe A.S.
        • Apple F.S.
        • Galvani M.
        • Katus H.A.
        • Newby L.K.
        • Ravkilde J.
        • Chaitman B.
        • Clemmensen P.M.
        • Dellborg M.
        • Hod H.
        • Porela P.
        • Underwood R.
        • Bax J.J.
        • Beller G.A.
        • Bonow R.
        • Van der Wall E.E.
        • Bassand J.P.
        • Wijns W.
        • Ferguson T.B.
        • Steg P.G.
        • Uretsky B.F.
        • Williams D.O.
        • Armstrong P.W.
        • Antman E.M.
        • Fox K.A.
        • Hamm C.W.
        • Ohman E.M.
        • Simoons M.L.
        • Poole-Wilson P.A.
        • Gurfinkel E.P.
        • Lopez-Sendon J.L.
        • Pais P.
        • Mendis S.
        • Zhu J.R.
        • Wallentin L.C.
        • Fernandez-Aviles F.
        • Fox K.M.
        • Parkhomenko A.N.
        • Priori S.G.
        • Tendera M.
        • Voipio-Pulkki L.M.
        • Vahanian A.
        • Camm A.J.
        • De Caterina R.
        • Dean V.
        • Dickstein K.
        • Filippatos G.
        • Funck-Brentano C.
        • Hellemans I.
        • Kristensen S.D.
        • McGregor K.
        • Sechtem U.
        • Silber S.
        • Widimsky P.
        • Zamorano J.L.
        • Morais J.
        • Brener S.
        • Harrington R.
        • Morrow D.
        • Lim M.
        • Martinez-Rios M.A.
        • Steinhubl S.
        • Levine G.N.
        • Gibler W.B.
        • Goff D.
        • Tubaro M.
        • Dudek D.
        • Al-Attar N.
        Universal definition of myocardial infarction.
        Circulation. 2007; 116: 2634-2653
        • Onorati F.
        • De Feo M.
        • Mastroroberto P.
        • Cristodoro L.
        • Pezzo F.
        • Renzulli A.
        • Cotrufo M.
        Determinants and prognosis of myocardial damage after coronary artery bypass grafting.
        Ann Thorac Surg. 2005; 79: 837-845
        • Domanski M.J.
        • Mahaffey K.
        • Hasselblad V.
        • Brener S.J.
        • Smith P.K.
        • Hillis G.
        • Engoren M.
        • Alexander J.H.
        • Levy J.H.
        • Chaitman B.R.
        • Broderick S.
        • Mack M.J.
        • Pieper K.S.
        • Farkouh M.E.
        Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery.
        JAMA. 2011; 305: 585-591
        • Bolli R.
        • Becker L.
        • Gross G.
        • Mentzer Jr, R.
        • Balshaw D.
        • Lathrop D.A.
        • NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia
        Myocardial protection at a crossroads: the need for translation into clinical therapy.
        Circ Res. 2004; 95: 125-134
        • Mentzer Jr., R.M.
        • Birjiniuk V.
        • Khuri S.
        • Lowe J.E.
        • Rahko P.S.
        • Weisel R.D.
        • Wellons H.A.
        • Barker M.L.
        • Lasley R.D.
        Adenosine myocardial protection: preliminary results of a phase II clinical trial.
        Ann Surg. 1999; 229: 643-649
        • Cohen G.
        • Feder-Elituv R.
        • Iazetta J.
        • Bunting P.
        • Mallidi H.
        • Bozinovski J.
        • Deemar C.
        • Christakis G.T.
        • Cohen E.A.
        • Wong B.I.
        • McLean R.D.
        • Myers M.
        • Morgan C.D.
        • Mazer C.D.
        • Smith T.S.
        • Goldman B.S.
        • Naylor C.D.
        • Fremes S.E.
        Phase 2 studies of adenosine cardioplegia.
        Circulation. 1998; 98: II225-II233
        • Mangano D.T.
        • Miao Y.
        • Tudor I.C.
        • Dietzel C.
        • Investigators of the Multicenter Study of Perioperative Ischemia (McSPI) Research Group, Ischemia Research and Education Foundation (IREF)
        Post-reperfusion myocardial infarction: long-term survival improvement using adenosine regulation with acadesine.
        J Am Coll Cardiol. 2006; 48: 206-214
        • Wongcharoen W.
        • Phrommintikul A.
        The protective role of curcumin in cardiovascular diseases.
        Int J Cardiol. 2009; 133: 145-151
        • Bengmark S.
        Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipoxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.
        J Parenter Enteral Nutr. 2006; 30: 45-51
        • Decker R.S.
        • Poole A.R.
        • Griffin E.E.
        • Dingle J.T.
        • Wildenthal K.
        Altered distribution of lysosomal cathepsin D in ischemic myocardium.
        J Clin Invest. 1977; 59: 911-921
        • Mathew S.
        • Menon P.V.
        • Kurup P.A.
        Changes in glycoproteins in isoproterenol-induced myocardial infarction in rats.
        Indian J Biochem Biophys. 1982; 19: 41-43
        • Ravichandran L.V.
        • Puvanakrishnan R.
        • Joseph K.T.
        Influence of isoproterenol-induced myocardial infarction on certain glycohydrolases and cathepsins in rats.
        Biochem Med Metab Biol. 1991; 45: 6-15
        • Takahashi S.
        • Barry A.C.
        • Factor S.M.
        Collagen degradation in ischaemic rat hearts.
        Biochem J. 1990; 265: 233-241
        • Nirmala C.
        • Puvanakrishnan R.
        Protective role of curcumin against isoproterenol induced myocardial infarction in rats.
        Mol Cell Biochem. 1996; 159: 85-93
        • Jain U.
        Myocardial infarction during coronary artery bypass surgery.
        J Cardiothorac Vasc Anesth. 1992; 6: 612-623