Efficacy and Safety of Coadministration of Rosuvastatin, Ezetimibe, and Colestimide in Heterozygous Familial Hypercholesterolemia

Published:November 24, 2011DOI:
      Aggressive low-density lipoprotein (LDL) cholesterol-lowering therapy is important for high-risk patients. However, sparse data exist on the impact of combined aggressive LDL cholesterol-lowering therapy in familial hypercholesterolemia (FH), particularly on side effects to changes in plasma coenzyme Q10 and proprotein convertase subtilisin/kexin type 9 levels. We enrolled 17 Japanese patients with heterozygous FH (12 men, 63.9 ± 7.4 years old) with single LDL receptor gene mutations in a prospective open randomized study. Permitted maximum doses of rosuvastatin (20 mg/day), ezetimibe (10 mg/day), and granulated colestimide (3.62 g/day) were introduced sequentially. Serum levels of LDL cholesterol decreased significantly by −66.4% (p <0.001) and 44% of participants achieved LDL cholesterol levels <100 mg/dl. There were no serious side effects or abnormal laboratory data that would have required the protocol to have been terminated except for 1 patient with myalgia. Coadministration of ezetimibe and granulated colestimide further lowered serum LDL cholesterol more than rosuvastatin alone without changing plasma coenzyme Q10 and proprotein convertase subtilisin/kexin type 9 levels. In conclusion, adequate introduction of this aggressive cholesterol-lowering regimen can improve the lipid profile of FH.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Rader D.J.
        • Cohen J.
        • Hobbs H.H.
        Monogenic hypercholesterolemia: new insights in pathogenesis and treatment.
        J Clin Invest. 2003; 111: 1795-1803
        • Kawashiri M.A.
        • Higashikata T.
        • Nohara A.
        • Kobayashi J.
        • Inazu A.
        • Koizumi J.
        • Mabuchi H.
        Efficacy of colestimide coadministered with atorvastatin in Japanese patients with heterozygous familial hypercholesterolemia (FH).
        Circ J. 2005; 69: 515-520
        • Davidson M.H.
        • McGarry T.
        • Bettis R.
        • Melani L.
        • Lipka L.J.
        • LeBeaut A.P.
        • Suresh R.
        • Sun S.
        • Veltri E.P.
        Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia.
        J Am Coll Cardiol. 2002; 40: 2125-2134
        • Mabuchi H.
        • Higashikata T.
        • Kawashiri M.
        • Katsuda S.
        • Mizuno M.
        • Nohara A.
        • Inazu A.
        • Koizumi J.
        • Kobayashi J.
        Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients.
        J Atheroscler Thromb. 2005; 12: 111-119
        • Welder G.
        • Zineh I.
        • Pacanowski M.A.
        • Troutt J.S.
        • Cao G.
        • Konrad R.J.
        High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol.
        J Lipid Res. 2010; 51: 2714-2721
        • Mabuchi H.
        • Higashikata T.
        • Nohara A.
        • Lu H.
        • Yu W.X.
        • Nozue T.
        • Noji Y.
        • Katsuda S.
        • Kawashiri M.A.
        • Inazu A.
        • Kobayashi J.
        • Koizumi J.
        Cutoff point separating affected and unaffected familial hypercholesterolemic patients validated by LDL-receptor gene mutants.
        J Atheroscler Thromb. 2005; 12: 35-40
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin Chem. 1972; 18: 499-502
        • Kawashiri M.A.
        • Nohara A.
        • Tada H.
        • Mori M.
        • Tsuchida M.
        • Katsuda S.
        • Inazu A.
        • Kobayashi J.
        • Koizumi J.
        • Mabuchi H.
        • Yamagishi M.
        Comparison of effects of pitavastatin and atorvastatin on plasma coenzyme Q10 in heterozygous familial hypercholesterolemia: results from a crossover study.
        Clin Pharmacol Ther. 2008; 83: 731-739
        • Noguchi T.
        • Kobayashi J.
        • Yagi K.
        • Nohara A.
        • Yamaaki N.
        • Sugihara M.
        • Ito N.
        • Oka R.
        • Kawashiri M.A.
        • Tada H.
        • Takata M.
        • Inazu A.
        • Yamagishi M.
        • Mabuchi H.
        Comparison of effects of Bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: Results from a crossover study.
        Atherosclerosis. 2011; 217: 165-170
        • Teramoto T.
        • Sasaki J.
        • Ueshima H.
        • Egusa G.
        • Kinoshita M.
        • Shimamoto K.
        • Daida H.
        • Biro S.
        • Hirobe K.
        • Funahashi T.
        • Yokote K.
        • Yokode M.
        Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese.
        J Atheroscler Thromb. 2007; 14: 45-50
        • National Cholesterol Education Program Expert on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)
        Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.
        Circulation. 2002; 106: 3143-3421
        • O'Keefe Jr, J.H.
        • Cordain L.
        • Harris W.H.
        • Moe R.M.
        • Vogel R.
        Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal.
        J Am Coll Cardiol. 2004; 43: 2142-2146
        • Tsuchida M.
        • Kawashiri M.A.
        • Tada H.
        • Takata M.
        • Nohara A.
        • Ino H.
        • Inazu A.
        • Kobayashi J.
        • Koizumi J.
        • Mabuchi H.
        • Yamagishi M.
        Marked aortic valve stenosis progression after receiving long-term aggressive cholesterol-lowering therapy using low-density lipoprotein apheresis in a patient with familial hypercholesterolemia.
        Circ J. 2009; 73: 963-966
        • Mabuchi H.
        • Higashikata T.
        • Kawashiri M.A.
        Clinical applications of long-term LDL-apheresis on and beyond refractory hypercholesterolemia.
        Transfus Apher Sci. 2004; 30: 233-243
        • Dale K.M.
        • Coleman C.I.
        • Henyan N.N.
        • Kluger J.
        • White C.M.
        Statins and cancer risk: a meta-analysis.
        JAMA. 2006; 295: 74-80
        • Kizer J.R.
        • Madias C.
        • Wilner B.
        • Vaughan C.J.
        • Mushlin A.I.
        • Trushin P.
        • Gotto Jr, A.M.
        • Pasternak R.C.
        Relation of different measures of low-density lipoprotein cholesterol to risk of coronary artery disease and death in a meta-regression analysis of large-scale trials of statin therapy.
        Am J Cardiol. 2010; 105: 1289-1296
        • McKenney J.M.
        Optimizing LDL-C lowering with statins.
        Am J Ther. 2004; 11: 54-59
        • Tremblay A.J.
        • Lamarche B.
        • Lemelin V.
        • Hoos L.
        • Benjannet S.
        • Seidah N.G.
        • Davis Jr, H.R.
        • Couture P.
        Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men.
        J Lipid Res. 2011; 52: 558-565
        • Andrikoula M.
        • McDowell I.F.
        The contribution of ApoB and ApoA1 measurements to cardiovascular risk assessment.
        Diabetes Obes Metab. 2008; 10: 271-278
      1. The Lipid Research Clinics Coronary Primary Prevention Trial results.
        JAMA. 1984; 251: 351-364
        • Cao G.
        • Qian Y.W.
        • Kowala M.C.
        • Konrad R.J.
        Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.
        Endocrinol Metab Immune Disord Drug Targets. 2008; 8: 238-243