Advertisement

Coronary Artery Distensibility Assessed by 3.0 Tesla Coronary Magnetic Resonance Imaging in Subjects With and Without Coronary Artery Disease

      Coronary vessel distensibility is reduced with atherosclerosis and normal aging, but direct measurements have historically required invasive measurements at cardiac catheterization. Therefore, we sought to assess coronary artery distensibility noninvasively using 3.0 Telsa coronary magnetic resonance imaging (MRI) and to test the hypothesis that this noninvasive technique can detect differences in coronary distensibility between healthy subjects and those with coronary artery disease (CAD). A total of 38 healthy, adult subjects (23 men, mean age 31 ± 10 years) and 21 patients with CAD, diagnosed using x-ray angiography (11 men, mean age 57 ± 6 years) were studied using a commercial whole-body MRI system. In each subject, the proximal segment of a coronary artery was imaged for the cross-sectional area measurements using cine spiral MRI. The distensibility (mm Hg−1 × 103) was determined as (end-systolic lumen area − end-diastolic lumen area)/(pulse pressure × end-diastolic lumen area). The pulse pressure was calculated as the difference between the systolic and diastolic brachial blood pressure. A total of 34 healthy subjects and 19 patients had adequate image quality for coronary area measurements. Coronary artery distensibility was significantly greater in the healthy subjects than in those with CAD (mean ± SD 2.4 ± 1.7 mm Hg−1 × 103 vs 1.1 ± 1.1 mm Hg−1 × 103, respectively, p = 0.007; median 2.2 vs 0.9 mm Hg−1 × 103). In a subgroup of 10 patients with CAD, we found a significant correlation between the coronary artery distensibility measurements assessed using MRI and x-ray coronary angiography (R = 0.65, p = 0.003). In a group of 10 healthy subjects, the repeated distensibility measurements demonstrated a significant correlation (R = 0.80, p = 0.006). In conclusion, 3.0-Tesla MRI, a reproducible noninvasive method to assess human coronary artery vessel wall distensibility, is able to detect significant differences in distensibility between healthy subjects and those with CAD.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roes S.D.
        • Westenberg J.J.
        • Doornbos J.
        • van der Geest R.J.
        • Angelie E.
        • de Roos A.
        • Stuber M.
        Aortic vessel wall magnetic resonance imaging at 3.0 Tesla: a reproducibility study of respiratory navigator gated free-breathing 3D black blood magnetic resonance imaging.
        Magn Reson Med. 2009; 61: 35-44
        • Kramer C.M.
        • Cerilli L.A.
        • Hagspiel K.
        • DiMaria J.M.
        • Epstein F.H.
        • Kern J.A.
        Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm.
        Circulation. 2004; 109: 1016-1021
        • Corti R.
        • Fayad Z.A.
        • Fuster V.
        • Worthley S.G.
        • Helft G.
        • Chesebro J.
        • Mercuri M.
        • Badimon J.J.
        Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging.
        Circulation. 2001; 104: 249-252
        • Lee J.M.
        • Shirodaria C.
        • Jackson C.E.
        • Robson M.D.
        • Antoniades C.
        • Francis J.M.
        • Wiesmann F.
        • Channon K.M.
        • Neubauer S.
        • Choudhury R.P.
        Multi-modal magnetic resonance imaging quantifies atherosclerosis and vascular dysfunction in patients with type 2 diabetes mellitus.
        Diabetes Vasc Dis Res. 2007; 4: 44-48
        • Hays A.G.
        • Hirsch G.A.
        • Kelle S.
        • Gerstenblith G.
        • Weiss R.G.
        • Stuber M.
        Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease.
        J Am Coll Cardiol. 2010; 56: 1657-1665
        • Oliver J.J.
        • Webb D.J.
        Noninvasive assessment of arterial stiffness and risk of atherosclerotic events.
        Arterioscler Thromb Vasc Biol. 2003; 23: 554-566
        • Nakatani S.
        • Yamagishi M.
        • Tamai J.
        • Goto Y.
        • Umeno T.
        • Kawaguchi A.
        • Yutani C.
        • Miyatake K.
        Assessment of coronary artery distensibility by intravascular ultrasound.
        Circulation. 1995; 91: 2904-2910
        • Cohn J.N.
        • Duprez D.A.
        • Grandits G.A.
        Arterial elasticity as part of a comprehensive assessment of cardiovascular risk and drug treatment.
        Hypertension. 2005; 46: 217-220
        • Dart A.M.
        • Lacombe F.
        • Yeoh J.K.
        • Cameron J.D.
        • Jennings G.L.
        • Laufer E.
        • Esmore D.S.
        Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease, or cardiac transplant.
        Lancet. 1991; 338: 270-273
        • Lee J.M.
        • Wiesmann F.
        • Shirodaria C.
        • Leeson P.
        • Petersen S.E.
        • Francis J.M.
        • Jackson C.E.
        • Robson M.D.
        • Neubauer S.
        • Channon K.M.
        • Choudhury R.P.
        Early changes in arterial structure and function following statin initiation: quantification by magnetic resonance imaging.
        Atherosclerosis. 2008; 197: 951-958
        • Cruickshank K.
        • Riste L.
        • Anderson S.G.
        • Wright J.S.
        • Dunn G.
        • Gosling R.G.
        Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?.
        Circulation. 2002; 106: 2085-2090
        • Laurent S.
        • Boutouyrie P.
        • Asmar R.
        • Gautier I.
        • Laloux B.
        • Guize L.
        • Ducimetiere P.
        • Benetos A.
        Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients.
        Hypertension. 2001; 37: 1236-1241
        • Boutouyrie P.
        • Laurent S.
        • Benetos A.
        • Girerd X.J.
        • Hoeks A.P.
        • Safar M.E.
        Opposing effects of ageing on distal and proximal large arteries in hypertensives.
        J Hypertens Suppl. 1992; 10: S87-S91
        • Benetos A.
        • Laurent S.
        • Hoeks A.P.
        • Boutouyrie P.H.
        • Safar M.E.
        Arterial alterations with aging and high blood pressure: a noninvasive study of carotid and femoral arteries.
        Arterioscler Thromb. 1993; 13: 90-97
        • Paini A.
        • Boutouyrie P.
        • Calvet D.
        • Tropeano A.I.
        • Laloux B.
        • Laurent S.
        Carotid and aortic stiffness: determinants of discrepancies.
        Hypertension. 2006; 47: 371-376
        • Leung W.H.
        • Stadius M.L.
        • Alderman E.L.
        Determinants of normal coronary artery dimensions in humans.
        Circulation. 1991; 84: 2294-2306
        • Jeremias A.
        • Spies C.
        • Herity N.A.
        • Ward M.R.
        • Pomerantsev E.
        • Yock P.G.
        • Fitzgerald P.J.
        • Yeung A.C.
        Coronary artery distensibility and compensatory vessel enlargement—a novel parameter influencing vascular remodeling?.
        Basic Res Cardiol. 2001; 96: 506-512
        • Shaw J.A.
        • Kingwell B.A.
        • Walton A.S.
        • Cameron J.D.
        • Pillay P.
        • Gatzka C.D.
        • Dart A.M.
        Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease.
        J Am Coll Cardiol. 2002; 39: 1637-1643
        • Glagov S.
        • Weisenberg E.
        • Zarins C.K.
        • Stankunavicius R.
        • Kolettis G.J.
        Compensatory enlargement of human atherosclerotic coronary arteries.
        N Engl J Med. 1987; 316: 1371-1375
        • Roberts C.S.
        • Roberts W.C.
        Cross-sectional area of the proximal portions of the three major epicardial coronary arteries in 98 necropsy patients with different coronary events: relationship to heart weight, age and sex.
        Circulation. 1980; 62: 953-959
        • Ahmadi N.
        • Shavelle D.
        • Nabavi V.
        • Hajsadeghi F.
        • Moshrefi S.
        • Flores F.
        • Azmoon S.
        • Mao S.S.
        • Ebrahimi R.
        • Budoff M.
        Coronary distensibility index measured by computed tomography is associated with the severity of coronary artery disease.
        J Cardiovasc Comput Tomogr. 2010; 4: 119-126
        • Frobert O.
        • Schionning J.
        • Gregersen H.
        • Baandrup U.
        • Petersen J.A.
        • Bagger J.P.
        Impaired human coronary artery distensibility by atherosclerotic lesions: a mechanical and histological investigation.
        Int J Exp Pathol. 1997; 78: 421-428
        • Scheidegger M.B.
        • Stuber M.
        • Boesiger P.
        • Hess O.M.
        Coronary artery imaging by magnetic resonance.
        Herz. 1996; 21: 90-96
        • Wellnhofer E.
        • Wahle A.
        • Mugaragu I.
        • Gross J.
        • Oswald H.
        • Fleck E.
        Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections.
        Int J Cardiovasc Imaging. 1999; 15 (355–356): 339-353
        • Schuurbiers J.C.
        • Lopez N.G.
        • Ligthart J.
        • Gijsen F.J.
        • Dijkstra J.
        • Serruys P.W.
        • Van der Steen A.F.
        • Wentzel J.J.
        In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (Angus).
        Catheter Cardiovasc Interv. 2009; 73: 620-626
        • Ge J.
        • Erbel R.
        • Gerber T.
        • Gorge G.
        • Koch L.
        • Haude M.
        • Meyer J.
        Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo.
        Br Heart J. 1994; 71: 572-578
        • Weissman N.J.
        • Palacios I.F.
        • Weyman A.E.
        Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements.
        Am Heart J. 1995; 130: 46-51
        • Peters R.J.
        • Kok W.E.
        • Rijsterborgh H.
        • van Dijk M.
        • Koch K.T.
        • Piek J.J.
        • David G.K.
        • Visser C.A.
        Reproducibility of quantitative measurements from intracoronary ultrasound images.
        Eur Heart J. 1996; 17: 1593-1599
        • Desai M.Y.
        • Lai S.
        • Barmet C.
        • Weiss R.G.
        • Stuber M.
        Reproducibility of 3D free-breathing magnetic resonance coronary vessel wall imaging.
        Eur Heart J. 2005; 26: 2320-2324
        • Vavuranakis M.
        • Stefanadis C.
        • Triandaphyllidi E.
        • Toutouzas K.
        • Toutouzas P.
        Coronary artery distensibility in diabetic patients with simultaneous measurements of luminal area and intracoronary pressure: evidence of impaired reactivity to nitroglycerin.
        J Am Coll Cardiol. 1999; 34: 1075-1081