Advertisement

Characterization of Atrial Remodeling Studied Remote from Episodes of Typical Atrial Flutter

      Atrial electrical remodeling has been shown after termination of atrial flutter (AFL); however, whether abnormalities persist beyond an arrhythmic episode is not known. We aimed to characterize the atrial substrate, remote from arrhythmia, in patients with typical AFL. We compared 20 patients, studied remote from episodes of typical AFL and without a history of atrial fibrillation, to 20 reference patients. Multipolar catheters placed at the lateral right atrium (RA), coronary sinus, crista terminalis, and septal RA measured the effective refractory period at 5 sites; conduction characteristics at the crista terminalis; and the conduction time along the lateral RA and coronary sinus. Electroanatomic right atrial maps were created to determine regional differences in voltage and conduction. Patients with AFL demonstrated the following compared to the reference patients: a larger right atrial volume (121 ± 30 vs 83 ± 24 ml, p = 0.005); a prolonged P-wave duration (122 ± 18 vs 102 ± 11 ms, p = 0.007); a longer right atrial activation time (107 ± 23 vs 85 ± 14 ms, p = 0.02); a prolonged conduction time along the lateral RA (67 ± 4 vs 47 ± 3 ms, p <0.001); a slower mean conduction velocity (1.2 ± 0.2 vs 2.1 ± 0.6 mm/ms, p <0.001); a greater proportion of fractionated electrographic findings (16 ± 4% vs 10 ± 6%, p = 0.006); more frequent abnormal electrographic findings at the crista terminalis (4.1 ± 2.6 vs 1.0 ± 1.1, p = 0.001); a prolonged corrected sinus node recovery time (318 ± 71 vs 203 ± 94 ms, p = 0.02); a trend toward greater effective refractory period (232 ± 29 vs 213 ± 12 ms, p = 0.06); and a lower voltage (2.1 ± 0.5 vs 3.0 ± 0.5 mV, p <0.001). In conclusion, studied remote from arrhythmia, patients with AFL demonstrated significant and diffuse atrial abnormalities characterized by structural changes, conduction abnormalities, and sinus node dysfunction. These persisting abnormalities characterize the substrate underlying typical AFL and may account for the subsequent development of atrial fibrillation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olgin J.E.
        • Kalman J.M.
        • Fitzpatrick A.P.
        • Lesh M.D.
        Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter.
        Circulation. 1995; 92: 1839-1848
        • Kalman J.M.
        • Olgin J.E.
        • Saxon L.A.
        • Fisher W.G.
        • Lee R.J.
        • Lesh M.D.
        Activation and entrainment mapping defines the tricuspid annulus as the anterior barrier in typical atrial flutter.
        Circulation. 1996; 94: 398-406
        • Cosio F.G.
        • Arribas F.
        • Barbero J.M.
        • Kallmeyer C.
        • Goicolea A.
        Validation of double-spike electrograms as markers of conduction delay or block in atrial flutter.
        Am J Cardiol. 1988; 61: 775-780
        • Nakagawa H.
        • Lazzara R.
        • Khastgir T.
        • Beckman K.J.
        • McClelland J.H.
        • Imai S.
        • Pitha J.V.
        • Becker A.E.
        • Arruda M.
        • Gonzalez M.D.
        • Widman L.E.
        • Rome M.
        • Neuhauser J.
        • Wang X.
        • Calame J.D.
        • Goudeau M.D.
        • Jackman W.M.
        Role of the tricuspid annulus and the Eustachian valve/ridge on atrial flutter.
        Circulation. 1996; 94: 407-424
        • Sparks P.B.
        • Jayaprakash S.
        • Vohra J.K.
        • Kalman J.M.
        Electrical remodeling of the atria associated with paroxysmal and chronic atrial flutter.
        Circulation. 2000; 102: 1807-1813
        • Morton J.B.
        • Byrne M.J.
        • Power J.M.
        • Raman J.
        • Kalman J.M.
        Electrical remodeling of the atrium in an anatomic model of atrial flutter: relationship between substrate and triggers for conversion to atrial fibrillation.
        Circulation. 2002; 105: 258-264
        • Franz M.R.
        • Karasik P.L.
        • Li C.
        • Moubarak J.
        • Chavez M.
        Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter.
        J Am Coll Cardiol. 1997; 30: 1785-1792
        • Daoud E.G.
        • Weiss R.
        • Augostini R.S.
        • Kalbfleisch S.J.
        • Schroeder J.
        • Polsinelli G.
        • Hummel J.D.
        Remodeling of sinus node function after catheter ablation of right atrial flutter.
        J Cardiovasc Electrophysiol. 2002; 13: 20-24
        • Sanders P.
        • Morton J.B.
        • Davidson N.C.
        • Spence S.J.
        • Vohra J.K.
        • Sparks P.B.
        • Kalman J.M.
        Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans.
        Circulation. 2003; 108: 1461-1468
        • Gepstein L.
        • Hayam G.
        • Ben-Haim S.A.
        A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart.
        Circulation. 1997; 95: 1611-1622
        • Sanders P.
        • Morton J.B.
        • Kistler P.M.
        • Spence S.J.
        • Davidson N.C.
        • Hussin A.
        • Vohra J.K.
        • Sparks P.B.
        • Kalman J.M.
        Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling.
        Circulation. 2004; 109: 1514-1522
        • Kistler P.M.
        • Sanders P.
        • Fynn S.P.
        • Stevenson I.H.
        • Spence S.J.
        • Vohra J.K.
        • Sparks P.B.
        • Kalman J.M.
        Electrophysiologic and electroanatomic changes in the human atrium associated with age.
        J Am Coll Cardiol. 2004; 44: 109-116
        • John B.
        • Stiles M.K.
        • Kuklik P.
        • Chandy S.T.
        • Young G.D.
        • Mackenzie L.
        • Szumowski L.
        • Joseph G.
        • Jose J.
        • Worthley S.G.
        • Kalman J.M.
        • Sanders P.
        Electrical remodelling of the left and right atria due to rheumatic mitral stenosis.
        Eur Heart J. 2008; 29: 2234-2243
        • Kuklik P.
        • Szumowski L.
        • Zebrowski J.J.
        • Walczak F.
        The reconstruction, from a set of points, and analysis of the interior surface of the heart chamber.
        Physiol Meas. 2004; 25: 617-627
        • Wijffels M.C.
        • Kirchhof C.J.
        • Dorland R.
        • Allessie M.A.
        Atrial fibrillation begets atrial fibrillation.
        Circulation. 1995; 92: 1954-1968
        • Morillo C.A.
        • Klein G.J.
        • Jones D.L.
        • Guiraudon C.M.
        Chronic rapid atrial pacing.
        Circulation. 1995; 91: 1588-1595
        • Li D.
        • Fareh S.
        • Leung T.K.
        • Nattel S.
        Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort.
        Circulation. 1999; 100: 87-95
        • Verheule S.
        • Wilson E.
        • Everett T.
        • Shanbhag S.
        • Golden C.
        • Olgin J.
        Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation.
        Circulation. 2003; 107: 2615-2622
        • Lau D.H.
        • Mackenzie L.
        • Kelly D.J.
        • Psaltis P.J.
        • Worthington M.
        • Rajendram A.
        • Kelly D.R.
        • Nelson A.J.
        • Zhang Y.
        • Kuklik P.
        • Brooks A.G.
        • Worthley S.G.
        • Faull R.J.
        • Rao M.
        • Edwards J.
        • Saint D.A.
        • Sanders P.
        Short-term hypertension is associated with the development of atrial fibrillation substrate: a study in an ovine hypertensive model.
        Heart Rhythm. 2010; 7: 396-404
        • Morton J.B.
        • Sanders P.
        • Vohra J.K.
        • Sparks P.B.
        • Morgan J.G.
        • Spence S.J.
        • Grigg L.E.
        • Kalman J.M.
        Effect of chronic right atrial stretch on atrial electrical remodeling in patients with an atrial septal defect.
        Circulation. 2003; 107: 1775-1782
        • Roberts-Thomson K.C.
        • John B.
        • Worthley S.G.
        • Brooks A.G.
        • Stiles M.K.
        • Lau D.H.
        • Kuklik P.
        • Shipp N.J.
        • Kalman J.M.
        • Sanders P.
        Left atrial remodeling in patients with atrial septal defects.
        Heart Rhythm. 2009; 6: 1000-1006
        • John B.
        • Stiles M.K.
        • Kuklik P.
        • Brooks A.G.
        • Chandy S.T.
        • Kalman J.M.
        • Sanders P.
        Reverse remodeling of the atria after treatment of chronic stretch in humans: implications for the atrial fibrillation substrate.
        J Am Coll Cardiol. 2010; 55: 1217-1226
        • Stiles M.K.
        • John B.
        • Wong C.X.
        • Kuklik P.
        • Brooks A.G.
        • Lau D.H.
        • Dimitri H.
        • Roberts-Thomson K.C.
        • Wilson L.
        • De Sciscio P.
        • Young G.D.
        • Sanders P.
        Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the “second factor.”.
        J Am Coll Cardiol. 2009; 53: 1182-1191
        • Schmieder S.
        • Ndrepepa G.
        • Dong J.
        • Zrenner B.
        • Schreieck J.
        • Schneider M.A.
        • Karch M.R.
        • Schmitt C.
        Acute and long-term results of radiofrequency ablation of common atrial flutter and the influence of the right atrial isthmus ablation on the occurrence of atrial fibrillation.
        Eur Heart J. 2003; 24: 956-962
        • Paydak H.
        • Kall J.G.
        • Burke M.C.
        • Rubenstein D.
        • Kopp D.E.
        • Verdino R.J.
        • Wilber D.J.
        Atrial fibrillation after radiofrequency ablation of type I atrial flutter: time to onset, determinants, and clinical course.
        Circulation. 1998; 98: 315-322
        • Ellis K.
        • Wazni O.
        • Marrouche N.
        • Martin D.
        • Gillinov M.
        • McCarthy P.
        • Saad E.B.
        • Bhargava M.
        • Schweikert R.
        • Saliba W.
        • Bash D.
        • Rossillo A.
        • Erciyes D.
        • Tchou P.
        • Natale A.
        Incidence of atrial fibrillation post-cavotricuspid isthmus ablation in patients with typical atrial flutter: left-atrial size as an independent predictor of atrial fibrillation recurrence.
        J Cardiovasc Electrophysiol. 2007; 18: 799-802
        • Garratt C.J.
        • Duytschaever M.
        • Killian M.
        • Dorland R.
        • Mast F.
        • Allessie M.A.
        Repetitive electrical remodeling by paroxysms of atrial fibrillation in the goat: no cumulative effect on inducibility or stability of atrial fibrillation.
        J Cardiovasc Electrophysiol. 1999; 10: 1101-1108