Advertisement

Relation of Microchannel Structure Identified by Optical Coherence Tomography to Plaque Vulnerability in Patients With Coronary Artery Disease

      Increased neovascularization in atherosclerotic plaques is associated with plaque vulnerability. The high resolution of optical coherence tomography (OCT) might provide a chance to directly visualize plaque neovascularization in vivo. The aim of the present study was to investigate the relation between microchannels in culprit plaques identified by OCT and plaque vulnerability in patients with coronary artery disease. A total of 63 consecutive patients with coronary artery disease who had undergone both OCT and intravascular ultrasound before any interventions to examine culprit lesion morphologies were enrolled. Microchannel was defined as a no-signal tubuloluminal structure on the cross-sectional optical coherence tomographic image. Microchannels were found in 24 (38%) of the 63 patients. The patients were divided into 2 groups according to the presence or absence of microchannels. The frequency of plaque rupture tended to be greater in the microchannel group (50% vs 28%, p = 0.11). The thickness of the fibrous cap (median 60 vs 100 μm, p = 0.001) was significantly less in the patients with microchannels, and significant differences were found in the frequency of thin-cap fibroatheroma (54% vs 21%, p = 0.012) and positive remodeling (67% vs 36%, p = 0.02) between the 2 groups. The high-sensitivity C-reactive protein levels in the microchannel group was significantly greater than those in the no-microchannel group (median 0.27 vs 0.13 mg/dl, p = 0.015). Moreover, increased microchannel counts were associated with greater high-sensitivity C-reactive protein levels (p = 0.01). In conclusion, a significant relation was found between the presence of microchannels in plaques identified by OCT and plaque vulnerability in patients with coronary artery disease.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kume T.
        • Akasaka T.
        • Kawamoto T.
        • Watanabe N.
        • Toyota E.
        • Sukmawan R.
        • Sadahira Y.
        • Yoshida K.
        Assessment of coronary arterial plaque by optical coherence tomography.
        Am J Cardiol. 2006; 97: 1172-1175
        • Kume T.
        • Akasaka T.
        • Kawamoto T.
        • Watanabe N.
        • Toyota E.
        • Neishi Y.
        • Sukmawan R.
        • Sadahira Y.
        • Yoshida K.
        Assessment of coronary intima-media thickness by optical coherence tomography: comparison with intravascular ultrasound.
        Circ J. 2005; 69: 903-907
        • Yabushita H.
        • Bouma B.E.
        • Houser S.L.
        • Aretz H.T.
        • Jang I.K.
        • Schlendorf K.H.
        • Kauffman C.R.
        • Shishkov M.
        • Kang D.H.
        • Halpern E.F.
        • Tearney G.J.
        Characterization of human atherosclerosis by optical coherence tomography.
        Circulation. 2002; 106: 1640-1645
        • Prati F.
        • Regar E.
        • Mintz G.S.
        • Arbustini E.
        • DiMario C.
        • Jang I.K.
        • Akasaka T.
        • Costa M.
        • Guagliumi G.
        • Grube E.
        • Ozaki Y.
        • Pinto F.
        • Serruys P.W.
        • Expert's OCT Review Document
        Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis.
        Eur Heart J. 2009 Oct 20; (Epub)
        • Kubo T.
        • Imanishi T.
        • Takarada S.
        • Kuroi A.
        • Ueno S.
        • Yamano T.
        • Tanimoto T.
        • Matsuo Y.
        • Masho T.
        • Kitabata H.
        • Tsuda K.
        • Tomobuchi Y.
        • Akasaka T.
        Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy.
        J Am Coll Cardiol. 2007; 50: 933-939
        • Kataiwa H.
        • Tanaka A.
        • Kitabata H.
        • Imanishi T.
        • Akasaka T.
        Safety and usefulness of non-occlusion image acquisition technique for optical coherence tomography.
        Circ J. 2008; 72: 1536-1537
        • Jang I.K.
        • Tearney G.J.
        • MacNeill B.
        • Takano M.
        • Moselewski F.
        • Iftima N.
        • Shishkov M.
        • Houser S.
        • Aretz H.T.
        • Halpern E.F.
        • Bouma B.E.
        In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography.
        Circulation. 2005; 111: 1551-1555
        • Mintz G.S.
        • Nissen S.E.
        • Anderson W.D.
        • Bailey S.R.
        • Erbel R.
        • Fitzgerald P.J.
        • Pinto F.J.
        • Rosenfield K.
        • Siegel R.J.
        • Tuzcu E.M.
        • Yock P.G.
        American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS): a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents.
        J Am Coll Cardiol. 2001; 37: 1478-1492
        • Tearney G.J.
        • Yabushita H.
        • Houser S.L.
        • Aretz H.T.
        • Jang I.K.
        • Schelndorf K.H.
        • Kauffman C.R.
        • Shishkov M.
        • Halpern E.F.
        • Bouma B.E.
        Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography.
        Circulation. 2003; 107: 113-119
        • Kume T.
        • Akasaka T.
        • Kawamoto T.
        • Okura H.
        • Watanabe N.
        • Toyota E.
        • Neishi Y.
        • Sukmawan R.
        • Sadahira Y.
        • Yoshida K.
        Measurement of the thickness of the fibrous cap by optical coherence tomography.
        Am Heart J. 2006; 152: e1-e4
        • Kolodgie F.D.
        • Gold H.K.
        • Burke A.P.
        • Fowler D.R.
        • Kruth H.S.
        • Weber D.K.
        • Farb A.
        • Guerrero L.J.
        • Hayase M.
        • Kutys R.
        • Narula J.
        • Finn A.V.
        • Virmani R.
        Intraplaque hemorrhage and progression of coronary atheroma.
        N Engl J Med. 2003; 349: 2316-2325
        • Moreno P.R.
        • Purushothaman K.R.
        • Fuster V.
        • Echeverri D.
        • Truszczynska H.
        • Sharma S.K.
        • Bandimon J.J.
        • O'Connor W.N.
        Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability.
        Circulation. 2004; 110: 2032-2038
        • Kashiwagi M.
        • Tanaka A.
        • Kitabata H.
        • Tsujioka H.
        • Matsumoto H.
        • Arita Y.
        • Ookochi K.
        • Kuroi A.
        • Kataiwa H.
        • Tanimoto T.
        • Ikejima H.
        • Takarada S.
        • Kubo T.
        • Hirata K.
        • Nakamura N.
        • Mizukoshi M.
        • Imanishi T.
        • Akasaka T.
        Relationship between coronary arterial remodeling, fibrous cap thickness and high-sensitivity C-reactive protein levels in patients with acute coronary syndrome.
        Circ J. 2009; 73: 1291-1295
        • Langheinrich A.C.
        • Michniewicz A.
        • Sedding D.G.
        • Walker G.
        • Beighley P.E.
        • Rau W.S.
        • Bohle R.M.
        • Ritman E.L.
        Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E–/–/low-density lipoprotein–/–double knockout mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 347-352
        • Tanaka A.
        • Imanishi T.
        • Kitabata H.
        • Kubo T.
        • Takarada S.
        • Tanimoto T.
        • Kuroi A.
        • Tsujioka H.
        • Ikejima H.
        • Ueno S.
        • Kataiwa H.
        • Okouchi K.
        • Kashiwaghi M.
        • Matsumoto H.
        • Takemoto K.
        • Nakamura N.
        • Hirata K.
        • Mizukoshi M.
        • Akasaka T.
        Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study.
        Circulation. 2008; 118: 2368-2373
        • Herrmann J.
        • Lerman L.O.
        • Rodriguez-Porcel M.
        • Holmes D.R.
        • Richardson D.M.
        • Ritman E.L.
        • Lerman A.
        Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia.
        Cardiovasc Res. 2001; 51: 762-766
        • Gössl M.
        • Versari D.
        • Mannheim D.
        • Ritman E.L.
        • Lerman L.O.
        • Lerman A.
        Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia: implications for vulnerable plaque-development.
        Atherosclerosis. 2007; 192: 246-252
        • Winter P.M.
        • Morawski A.M.
        • Caruthers S.D.
        • Fuhrhop R.W.
        • Zhang H.
        • Williams T.A.
        • Allen J.S.
        • Lacy E.K.
        • Robertson J.D.
        • Lanza G.M.
        • Wickline S.A.
        Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha (v) beta3-integrin-targeted nanoparticles.
        Circulation. 2003; 108: 2270-2274
        • Vavuranakis M.
        • Kakadiaris I.A.
        • O'Malley S.M.
        • Papaioannou T.G.
        • Sanidas E.A.
        • Naghavi M.
        • Carlier S.
        • Tousoulis D.
        • Stefanadis C.
        A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis.
        Int J Cardiol. 2008; 130: 23-29
        • Tenaglia A.N.
        • Peters K.G.
        • Sketch Jr, M.H.
        • Annex B.H.
        Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina.
        Am Heart J. 1998; 135: 10-14
        • Regar E.
        • van Beusekom H.M.M.
        • van der Gissen W.J.
        • Serruys P.W.
        Optical coherence tomography findings at 5-year follow-up after coronary stent implantation.
        Circulation. 2005; 112: e345-e346
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.H.
        • Genest J.
        • Gotto Jr, A.M.
        • Kastelein J.J.P.
        • Koenig W.
        • Libby P.
        • Lorenzatti A.J.
        • MacFadyen J.G.
        • Nordestgaard B.G.
        • Shepherd J.
        • Willerson J.T.
        • Glynn R.J.
        • JUPITER Study Group
        Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
        N Engl J Med. 2008; 359: 2195-2207
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1262-1275
        • Takarada S.
        • Imanishi T.
        • Kubo T.
        • Tanimoto T.
        • Kitabata H.
        • Nakamura N.
        • Tanaka A.
        • Mizukoshi M.
        • Akasaka T.
        Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study.
        Atherosclerosis. 2009; 202: 491-497
        • Moulton K.S.
        • Vakili K.
        • Zurakowski D.
        • Soliman M.
        • Butterfield C.
        • Sylvin E.
        • Lo K.M.
        • Gillies S.
        • Javaherian K.
        • Folkman J.
        Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis.
        Proc Natl Acad Sci USA. 2003; 100: 4736-4741
        • Wilson S.H.
        • Herrmann J.
        • Lerman L.O.
        • Holmes D.R.
        • Napoli C.
        • Ritman E.L.
        • Lerman A.
        Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering.
        Circulation. 2002; 105: 415-418
        • Barlis P.
        • Schmitt J.M.
        Current and future developments in intracoronary optical coherence tomography imaging.
        EuroInterv. 2009; 4: 529-534
        • O'Brien E.R.
        • Garvin M.R.
        • Dev R.
        • Stewart D.K.
        • Hinohara T.
        • Simpson J.B.
        • Schwartz S.M.
        Angiogenesis in human coronary atherosclerotic plaques.
        Am J Pathol. 1994; 145: 883-894