Advertisement

Comparison of Genetic Versus Clinical Diagnosis in Familial Hypercholesterolemia

      Early diagnosis is important in familial hypercholesterolemia (FH), a highly atherogenic condition, but internationally agreed clinical diagnostic criteria are lacking. Genetic testing for low-density lipoprotein (LDL) receptor (LDLR) and apolipoprotein B (APOB) gene defects is the preferable diagnostic method, but the best phenotype indication to proceed with genetic diagnosis has not been established. The aim of this study was to assess the predictive and accuracy values of standard diagnostic criteria for detecting disease-causing mutations in 825 subjects with clinical FH aged ≥14 years from 3 lipid clinics in Spain. All subjects underwent thorough genetic testing for the detection of LDLR and APOB defects using the Lipochip platform. FH-causing mutations were detected in 459 subjects (55.6%). By logistic regression analysis, familial or personal history of tendon xanthoma (TX) and LDL cholesterol were strongly associated with genetic diagnosis (p <0.005, R2 = 0.41). In subjects without familial or personal histories of TX, the diagnostic criteria for FH of the Make Early Diagnosis to Prevent Early Deaths (MEDPED) project, based on age-specific LDL cholesterol thresholds, showed sensitivity of 72.4%, specificity of 71.1%, and accuracy of 71.6%. LDL cholesterol ≥190 mg/dl in subjects with familial or personal histories of TX and ≥220, ≥225, and ≥235 mg/dl in those without such histories aged <30, 30 to 39, and ≥40 years, respectively, showed sensitivity of 91.1%, specificity of 71.1%, and accuracy of 74.2% for a positive genetic diagnosis. This new set of diagnostic criteria for FH was validated in an independent group of 440 subjects from 6 additional Spanish lipid clinics. In conclusion, TX and age-adjusted LDL cholesterol cut-off values have the highest value for clinical diagnosis and indication of genetic testing in FH.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Scientific Steering Committee on behalf of the Simon Broome Register Group
        Risk of fatal coronary heart disease in familial hypercholesterolaemia.
        BMJ. 1991; 303: 893-896
        • Williams R.R.
        • Hunt S.C.
        • Schumacher M.C.
        • Hegele R.A.
        • Leppert M.F.
        • Ludwig E.H.
        • Hopkins P.N.
        Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics.
        Am J Cardiol. 1993; 72: 171-176
        • Defesche J.
        Familial hypercholesterolemia.
        in: Betteridge J. Lipids and Vascular Disease. Vol. 6. Martin Dunitz, London, United Kingdom2000: 65-76
        • Goldstein J.L.
        • Hobbs H.H.
        • Brown M.S.
        Familial hypercholesterolemia.
        in: Scriver C.R. Baudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, New York2001: 2863-2913
        • Graham C.A.
        • McIlhatton B.P.
        • Kirk C.W.
        • Beattie E.D.
        • Lyttle K.
        • Hart P.
        • Neely R.D.G.
        • Young I.S.
        • Nicholls D.P.
        Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation rate.
        Atherosclerosis. 2005; 182: 331-340
        • Civeira F.
        • International Panel on Management of Familial Hypercholesterolemia
        Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia.
        Atherosclerosis. 2004; 173: 55-68
        • Marks D.
        • Thorogood M.
        • Neil H.A.
        • Humphries S.E.
        A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia.
        Atherosclerosis. 2003; 168: 1-14
        • Damgaard D.
        • Larsen M.L.
        • Nissen P.H.
        • Jensen J.M.
        • Jensen H.K.
        • Soerensen V.R.
        • Jensen L.G.
        • Faergeman O.
        The relationship of molecular genetics to clinical diagnosis of familial hypercholesterolemia in a Danish population.
        Atherosclerosis. 2005; 180: 155-160
        • Tejedor D.
        • Castillo S.
        • Mozas P.
        • Jiménez E.
        • López M.
        • Tejedor M.T.
        • Artieda M.
        • Alonso R.
        • Mata P.
        • Simón L.
        • et al.
        • Spanish Familial Hypercholesterolemia Group
        Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia.
        Clin Chem. 2005; 51: 1137-1144
        • Tejedor D.
        • Castillo S.
        • Mozas P.
        • Jiménez E.
        • Lopez M.
        • Tejedor M.T.
        • Artieda M.
        • Alonso R.
        • Mata P.
        • Simon L.
        • et al.
        Comparison of DNA array platform vs. DNA sequencing as genetic diagnosis tools for familial hypercholesterolemia.
        Clin Chem. 2006; 52: 1971-1972
        • Civeira F.
        • Castillo S.
        • Alonso R.
        • Meriño-Ibarra E.
        • Cenarro A.
        • Artieda M.
        • Martín-Fuentes P.
        • Ros E.
        • Pocoví M.
        • Mata P.
        • Spanish Familial Hypercholesterolemia Group
        Tendon xanthomas in familial hypercholesterolemia are associated with cardiovascular risk independently of the low-density lipoprotein receptor gene mutation.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1960-1965
        • Junyent M.
        • Gilabert R.
        • Zambón D.
        • Pocoví M.
        • Mallén M.
        • Cofán M.
        • Núñez I.
        • Civeira F.
        • Tejedor D.
        • Ros E.
        Femoral atherosclerosis in heterozygous familial hypercholesterolemia.
        Arterioscler Thromb Vasc Biol. 2008; 28: 580-586
        • Heath K.
        • Day I.N.M.
        • Humphries S.E.
        Universal primer quantitative fluorescent multiplex (UPQFM) PCR: a method to detect major and minor rearrangements of the low-density lipoprotein receptor gene.
        J Med Genet. 2000; 37: 272-280
        • Umans-Eckenhausen M.A.
        • Defesche J.C.
        • Sijbrands E.J.
        • Scheerder R.L.
        • Kastelein J.J.
        Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands.
        Lancet. 2001; 357: 165-168
        • Bertolini S.
        • Cantafora A.
        • Averna M.
        • Cortese C.
        • Motti C.
        • Martini S.
        • Pes G.
        • Postiglione A.
        • Stefanutti C.
        • Blotta I.
        • et al.
        Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype.
        Arterioscler Thromb Vasc Biol. 2000; 20: 41-52
        • Descamps O.S.
        • Gilbeau J.-P.
        • Leysen X.
        • Van Leuven F.
        • Heller F.R.
        Impact of genetic defects on atherosclerosis in patients suspected of familial hypercholesterolaemia.
        Eur J Clin Invest. 2001; 31: 958-965
        • Humphries S.E.
        • Whittall R.A.
        • Hubbart C.S.
        • Maplebeck S.
        • Cooper J.A.
        • Soutar A.K.
        • Naoumova R.
        • Thompson G.R.
        • Seed M.
        • Durrington P.N.
        • et al.
        • Simon Broome Familial Hyperlipidaemia Register Group and Scientific Steering Committee
        Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk.
        J Med Genet. 2006; 43: 943-949
        • van Aalst-Cohen E.S.
        • Jansen A.C.
        • Tanck M.W.
        • Defesche J.C.
        • Trip M.D.
        • Lansberg P.J.
        • Stalenhoef A.F.
        • Kastelein J.J.
        Diagnosing familial hypercholesterolaemia: the relevance of genetic testing.
        Eur Heart J. 2006; 27: 2240-2246
        • Abifadel M.
        • Varret M.
        • Rabes J.P.
        • Allard D.
        • Ouguerram K.
        • Devillers M.
        • Cruaud C.
        • Benjannet S.
        • Wickham L.
        • Erlich D.
        • et al.
        Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.
        Nat Genet. 2003; 34: 154-156
        • Damgaard D.
        • Jensen J.M.
        • Larsen M.L.
        • Sorensen V.R.
        • Jensen H.K.
        No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the familial hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes.
        Atherosclerosis. 2004; 177: 415-422
        • Junyent M.
        • Gilabert R.
        • Zambón D.
        • Núñez I.
        • Vela M.
        • Civeira F.
        • Pocoví M.
        • Ros E.
        The use of Achilles tendon sonography to distinguish familial hypercholesterolemia from other genetic dyslipidemias.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2203-2208
        • Heath K.E.
        • Gudnason V.
        • Humphries S.E.
        • Seed M.
        The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia.
        Atherosclerosis. 1999; 143: 41-54