Defining Optimal Research Study Design for Cardiovascular Imaging Using Computed Tomography Angiography as a Model

      Patients, physicians, and payers are facing a significant increase in cardiovascular (CV) imaging use, resulting in skyrocketing societal costs, without clear improvement in patient outcomes. The need for studies evaluating the effects of CV imaging that assess appropriate end points is critical to address continued concerns over the lack of well-designed clinical studies. Thus, the investigators propose a framework, using computed tomographic angiography as a model, that should be considered in the optimal design of future imaging research and would potentially provide payers with data to make appropriate reimbursement decisions. The inclusion of risk stratification, randomization, multiple-site participation, and multigeography site enrollment are key elements in the construction of such studies. Meaningful end points with regard to operating characteristics, downstream testing, CV event rates, outcomes, and costs are essential to appropriately evaluate any new imaging technology. Only once better level evidence is formed to support CV imaging can the central issues of quality and appropriateness of CV imaging truly be evaluated. If the CV community does not embrace this type of scientific evaluation of CV imaging modalities and fails to adequately identify the value in these techniques, it may ultimately lose the ability to use them to provide optimal care to its patients.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. (Accessed July 2, 2008)
        • Brindis R.G.
        • Douglas P.S.
        • Hendel R.C.
        • Peterson E.D.
        • Wolk M.J.
        • Allen J.M.
        • Patel M.R.
        • Raskin I.E.
        • Hendel R.C.
        • Bateman T.M.
        • et al.
        ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association.
        J Am Coll Cardiol. 2005; 46: 1587-1605
        • Douglas P.S.
        • Khandheria B.
        • Stainback R.F.
        • Weissman N.J.
        • Brindis R.G.
        • Patel M.R.
        • Khandheria B.
        • Alpert J.S.
        • Fitzgerald D.
        • Heidenreich P.
        • et al.
        ACCF/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 appropriateness criteria for transthoracic and transesophageal echocardiography: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American Society of Echocardiography, American College of Emergency Physicians, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance endorsed by the American College of Chest Physicians and the Society of Critical Care Medicine.
        J Am Coll Cardiol. 2007; 50: 187-204
        • Hendel R.C.
        • Patel M.R.
        • Kramer C.M.
        • Poon M.
        • Hendel R.C.
        • Carr J.C.
        • Gerstad N.A.
        • Gillam L.D.
        • Hodgson J.M.
        • Kim R.J.
        • et al.
        ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology.
        J Am Coll Cardiol. 2006; 48: 1475-1497
        • Ransohoff D.F.
        • Feinstein A.R.
        Problems of spectrum and bias in evaluating the efficacy of diagnostic tests.
        N Engl J Med. 1978; 299: 926-930
        • Hoffmann M.H.
        • Shi H.
        • Schmitz B.L.
        • Schmid F.T.
        • Lieberknecht M.
        • Schulze R.
        • Ludwig B.
        • Kroschel U.
        • Jahnke N.
        • Haerer W.
        • et al.
        Noninvasive coronary angiography with multislice computed tomography.
        JAMA. 2005; 293: 2471-2478
        • Hoffmann U.
        • Moselewski F.
        • Cury R.C.
        • Ferencik M.
        • Jang I.K.
        • Diaz L.J.
        • Abbara S.
        • Brady T.J.
        • Achenbach S.
        Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis.
        Circulation. 2004; 110: 2638-2643
        • Janne d'Othee B.
        • Siebert U.
        • Cury R.
        • Jadvar H.
        • Dunn E.J.
        • Hoffmann U.
        A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease.
        Eur J Radiol. 2008; 65: 449-461
        • Lim M.C.
        • Wong T.W.
        • Yaneza L.O.
        • De Larrazabal C.
        • Lau J.K.
        • Boey H.K.
        Non-invasive detection of significant coronary artery disease with multi-section computed tomography angiography in patients with suspected coronary artery disease.
        Clin Radiol. 2006; 61: 174-180
        • Meijboom W.B.
        • Mollet N.R.
        • Van Mieghem C.A.
        • Kluin J.
        • Weustink A.C.
        • Pugliese F.
        • Vourvouri E.
        • Cademartiri F.
        • Bogers A.J.
        • Krestin G.P.
        • de Feyter P.J.
        Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery.
        J Am Coll Cardiol. 2006; 48: 1658-1665
        • Meijboom W.B.
        • Mollet N.R.
        • Van Mieghem C.A.
        • Weustink A.C.
        • Pugliese F.
        • van Pelt N.
        • Cademartiri F.
        • Vourvouri E.
        • de Jaegere P.
        • et al.
        64-slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome.
        Heart. 2007; 93: 1386-1392
        • Mollet N.R.
        • Cademartiri F.
        • Nieman K.
        • Saia F.
        • Lemos P.A.
        • McFadden E.P.
        • Pattynama P.M.
        • Serruys P.W.
        • Krestin G.P.
        • de Feyter P.J.
        Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris.
        J Am Coll Cardiol. 2004; 43: 2265-2270
        • Mollet N.R.
        • Cademartiri F.
        • van Mieghem C.A.
        • Runza G.
        • McFadden E.P.
        • Baks T.
        • Serruys P.W.
        • Krestin G.P.
        • de Feyter P.J.
        High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography.
        Circulation. 2005; 112: 2318-2323
        • Pugliese F.
        • Mollet N.R.
        • Runza G.
        • van Mieghem C.
        • Meijboom W.B.
        • Malagutti P.
        • Baks T.
        • Krestin G.P.
        • deFeyter P.J.
        • Cademartiri F.
        Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris.
        Eur Radiol. 2006; 16: 575-582
        • Raff G.L.
        • Gallagher M.J.
        • O'Neill W.W.
        • Goldstein J.A.
        Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography.
        J Am Coll Cardiol. 2005; 46: 552-557
        • Ropers D.
        • Baum U.
        • Pohle K.
        • Anders K.
        • Ulzheimer S.
        • Ohnesorge B.
        • Schlundt C.
        • Bautz W.
        • Daniel W.G.
        • Achenbach S.
        Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction.
        Circulation. 2003; 107: 664-666
        • Sun Z.
        • Lin C.
        • Davidson R.
        • Dong C.
        • Liao Y.
        Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review.
        Eur J Radiol. 2008; 67: 78-84
        • Roger V.L.
        • Pellikka P.A.
        • Bell M.R.
        • Chow C.W.
        • Bailey K.R.
        • Seward J.B.
        Sex and test verification bias.
        Circulation. 1997; 95: 405-410
        • Gibbons R.J.
        • Balady G.J.
        • Bricker J.T.
        • Chaitman B.R.
        • Fletcher G.F.
        • Froelicher V.F.
        • Mark D.B.
        • McCallister B.D.
        • Mooss A.N.
        • O'Reilly M.G.
        • et al.
        ACC/AHA 2002 guideline update for exercise testing: summary article.
        J Am Coll Cardiol. 2002; 40: 1531-1540
        • Detrano R.
        • Janosi A.
        • Lyons K.P.
        • Marcondes G.
        • Abbassi N.
        • Froelicher V.F.
        Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram.
        Am J Med. 1988; 84: 699-710
        • Douglas P.
        • Iskandrian A.E.
        • Krumholz H.M.
        • Gillam L.
        • Hendel R.
        • Jollis J.
        • Peterson E.
        • Douglas P.
        • Chen J.
        • et al.
        Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.
        J Am Coll Cardiol. 2006; 48: 2141-2151
        • Ehler D.
        • Carney D.K.
        • Dempsey A.L.
        • Rigling R.
        • Kraft C.
        • Witt S.A.
        • Kimball T.R.
        • Sisk E.J.
        • Geiser E.A.
        • Gresser C.D.
        • Waggoner A.
        Guidelines for cardiac sonographer education: recommendations of the American Society of Echocardiography Sonographer Training and Education Committee.
        J Am Soc Echocardiogr. 2001; 14: 77-84
        • Nuclear Medicine Technology Certification Board
        Home page.
        (Accessed July 2, 2008)
        • Cerqueira M.D.
        • Weissman N.J.
        • Dilsizian V.
        • Jacobs A.K.
        • Kaul S.
        • Laskey W.K.
        • Pennell D.J.
        • Rumberger J.A.
        • Ryan T.
        • Verani M.S.
        Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
        Circulation. 2002; 105: 539-542
        • Gallagher M.J.
        • Ross M.A.
        • Raff G.L.
        • Goldstein J.A.
        • O'Neill W.W.
        • O'Neil B.
        The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients.
        Ann Emerg Med. 2007; 49: 125-136
        • Kapetanopoulos A.
        • Heller G.V.
        • Selker H.P.
        • Ruthazer R.
        • Beshansky J.R.
        • Feldman J.A.
        • Griffith J.L.
        • Hendel R.C.
        • Pope J.H.
        • Spiegler E.J.
        • Udelson J.E.
        Acute resting myocardial perfusion imaging in patients with diabetes mellitus: results from the Emergency Room Assessment of Sestamibi for Evaluation of Chest Pain (ERASE Chest Pain) trial.
        J Nucl Cardiol. 2004; 11: 570-577
        • Adriaensen M.E.A.P.M.
        • Kock M.C.J.M.
        • Stijnen T.
        • van Sambeek M.R.H.M.
        • van Urk H.
        • Pattynama P.M.T.
        • Myriam Hunink M.G.
        Peripheral arterial disease: therapeutic confidence of CT versus digital subtraction angiography and effects on additional imaging recommendations.
        Radiology. 2004; 233: 385-391
        • Hunink M.G.
        • Krestin G.P.
        Study design for concurrent development, assessment, and implementation of new diagnostic imaging technology.
        Radiology. 2002; 222: 604-614
        • Einstein A.J.
        • Henzlova M.J.
        • Rajagopalan S.
        Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography.
        JAMA. 2007; 298: 317-323
        • Metz L.D.
        • Beattie M.
        • Hom R.
        • Redberg R.F.
        • Grady D.
        • Fleischmann K.E.
        The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis.
        J Am Coll Cardiol. 2007; 49: 227-237
        • Miller M.E.
        MedPAC recommendations on imaging services.
        (Accessed July 2, 2008)
        • Pope J.H.
        • Aufderheide T.P.
        • Ruthazer R.
        • Woolard R.H.
        • Feldman J.A.
        • Beshansky J.R.
        • Griffith J.L.
        • Selker H.P.
        Missed diagnoses of acute cardiac ischemia in the emergency department.
        N Engl J Med. 2000; 342: 1163-1170