Advertisement

Mechanism of Action of Niacin

  • Vaijinath S. Kamanna
    Affiliations
    Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, California, USA; and Department of Medicine, University of California, Irvine, Irvine, California, USA.
    Search for articles by this author
  • Moti L. Kashyap
    Correspondence
    Address for reprints: Moti L. Kashyap, MD, Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, 5901 East Seventh Street (11/111-I), Long Beach, California 90822.
    Affiliations
    Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, California, USA; and Department of Medicine, University of California, Irvine, Irvine, California, USA.
    Search for articles by this author
      Nicotinic acid (niacin) has long been used for the treatment of lipid disorders and cardiovascular disease. Niacin favorably affects apolipoprotein (apo) B–containing lipoproteins (eg, very-low-density lipoprotein [VLDL], low-density lipoprotein [LDL], lipoprotein[a]) and increases apo A-I–containing lipoproteins (high-density lipoprotein [HDL]). Recently, new discoveries have enlarged our understanding of the mechanism of action of niacin and challenged older concepts. There are new data on (1) how niacin affects triglycerides (TGs) and apo B–containing lipoprotein metabolism in the liver, (2) how it affects apo A-I and HDL metabolism, (3) how it affects vascular anti-inflammatory events, (4) a specific niacin receptor in adipocytes and immune cells, (5) how niacin causes flushing, and (6) the characterization of a niacin transport system in liver and intestinal cells. New findings indicate that niacin directly and noncompetitively inhibits hepatocyte diacylglycerol acyltransferase–2, a key enzyme for TG synthesis. The inhibition of TG synthesis by niacin results in accelerated intracellular hepatic apo B degradation and the decreased secretion of VLDL and LDL particles. Previous kinetic studies in humans and recent in vitro cell culture findings indicate that niacin retards mainly the hepatic catabolism of apo A-I (vs apo A-II) but not scavenger receptor BI–mediated cholesterol esters. Decreased HDL–apo A-I catabolism by niacin explains the increases in HDL half-life and concentrations of lipoprotein A-I HDL subfractions, which augment reverse cholesterol transport. Initial data suggest that niacin, by inhibiting the hepatocyte surface expression of β-chain adenosine triphosphate synthase (a recently reported HDL–apo A-I holoparticle receptor), inhibits the removal of HDL–apo A-I. Recent studies indicate that niacin increases vascular endothelial cell redox state, resulting in the inhibition of oxidative stress and vascular inflammatory genes, key cytokines involved in atherosclerosis. The niacin flush results from the stimulation of prostaglandins D2 and E2 by subcutaneous Langerhans cells via the G protein–coupled receptor 109A niacin receptor. Although decreased free fatty acid mobilization from adipose tissue via the G protein–coupled receptor 109A niacin receptor has been a widely suggested mechanism of niacin to decrease TGs, physiologically and clinically, this pathway may be only a minor factor in explaining the lipid effects of niacin.
      To read this article in full you will need to make a payment

      References

        • Altschul R.
        • Hoffer A.
        • Stephen J.D.
        Influence of nicotinic acid on serum cholesterol in man.
        Arch Biochem Biophys. 1955; 54: 558-559
        • Meyers C.D.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin therapy in atherosclerosis.
        Curr Opin Lipidol. 2004; 15: 659-665
        • Carlson L.A.
        Nicotinic acid: the broad-spectrum lipid drug.
        J Intern Med. 2005; 258: 94-114
        • Ganji S.H.
        • Zhang L.-H.
        • Kamanna V.S.
        • Kashyap M.L.
        Effect of niacin on lipoproteins and atherosclerosis.
        Future Lipidol. 2006; 1: 549-557
        • Morgan J.M.
        • Capuzzi D.M.
        • Baksh R.I.
        Effects of extended-release niacin on lipoprotein subclass distribution.
        Am J Cardiol. 2003; 91: 1432-1436
        • Zambon A.
        • Hokanson J.E.
        • Brown B.G.
        • Brunzell J.D.
        Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density.
        Circulation. 1999; 99: 1959-1964
        • Backes J.M.
        • Gibson C.A.
        Effect of lipid lowering drug therapy on small-dense low-density lipoprotein.
        Ann Pharmacother. 2005; 39: 523-526
        • McKenney J.M.
        • McCormick L.S.
        • Schaefer E.J.
        • Black D.M.
        • Watkins M.L.
        Effect of niacin and atorvastatin on lipoprotein subclasses in patients with atherogenic dyslipidemia.
        Am J Cardiol. 2001; 88: 270-274
        • Wahlberg G.
        • Walldius G.
        • Olsson A.G.
        • Kirstein P.
        Effect of nicotinic acid on serum cholesterol concentrations of high density lipoprotein subfractions HDL2 and HDL3 in hyperlipoproteinaemia.
        J Intern Med. 1990; 228: 151-157
        • Shepherd J.
        • Betteridge J.
        • Van Gaal L.
        • European Consensus Panel
        Nicotinic acid in the management of dyslipidemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel.
        Curr Med Res Opin. 2005; 21: 665-682
        • Sakai T.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol.
        Arterioscler Thromb Vasc Biol. 2001; 21: 1783-1789
        • Brown B.G.
        • Zhao X.Q.
        • Chait A.
        • Fisher L.D.
        • Cheung M.C.
        • Morse J.S.
        • Dowdy A.A.
        • Marino E.K.
        • Bolson E.L.
        • Alaupovic P.
        • et al.
        Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.
        N Engl J Med. 2001; 345: 1583-1592
        • Taylor A.J.
        • Sullenberger L.E.
        • Lee H.J.
        • Lee J.K.
        • Grace K.A.
        Arterial biology for the investigation of the treatment effects of reducing cholesterol (ARBITER)2.
        Circulation. 2004; 110: 3512-3517
        • Said H.M.
        • Nabokina S.M.
        • Balamurgan K.
        • Mohammed Z.M.
        • Urbina C.
        • Kashyap M.L.
        Mechanism of nicotinic acid transport in human liver cells: studies with HepG2 cells and primary hepatocytes.
        Am J Physiol Cell Physiol. 2007; 293: C1773-C1778
        • Nabokina S.M.
        • Kashyap M.L.
        • Said H.M.
        Mechanism and regulation of human intestinal niacin uptake.
        Am J Physiol Cell Physiol. 2005; 289: C97-C103
        • Ginsberg H.N.
        Synthesis and secretion of apolipoprotein B from cultured liver cells.
        Curr Opin Lipidol. 1995; 6: 275-280
        • Davis R.A.
        Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver.
        Biochim Biophys Acta. 1999; 1440: 1-31
        • Grundy S.M.
        • Mok H.Y.I.
        • Zech L.
        • Berman M.
        Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man.
        J Lipid Res. 1981; 22: 24-36
        • Jin F.Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin accelerates intracellular apo B degradation by inhibiting triacylglycerol synthesis in human hepatoblastoma (Hep G2) cells.
        Arterioscler Thromb Vasc Biol. 1999; 19: 1051-1059
        • Ganji S.H.
        • Tavintharan S.
        • Zhu D.
        • Xing Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin non-competitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells.
        J Lipid Res. 2004; 45: 1835-1845
        • Carlson L.A.
        • Oro L.
        The effect of nicotinic acid on the plasma free fatty acids.
        Acta Med Scand. 1962; 172: 641-645
        • Carlson L.A.
        Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro.
        Acta Med Scand. 1963; 173: 719-722
        • Tunaru S.
        • Kero J.
        • Schaub A.
        • Wufka C.
        • Blaukat A.
        • Pfeffer K.
        • Offermanns S.
        PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.
        Nat Med. 2003; 9: 352-355
        • Wise A.
        • Foord S.M.
        • Fraser N.J.
        • Barnes A.A.
        • Elshourbagy N.
        • Eiler M.
        • Ignar D.M.
        • Murdock P.R.
        • Steplewski K.
        • Green A.
        • et al.
        Molecular identification of high and low affinity receptors for nicotinic acid.
        J Biol Chem. 2003; 278: 9869-9874
        • Soga T.
        • Kamohara M.
        • Takasaki J.
        • Matsumoto S.-H.
        • Saito T.
        • Ohishi T.
        • Hiyama H.
        • Matsuo A.
        • Matsushime H.
        • Furuichi K.
        Molecular identification of nicotinic acid receptor.
        Biochem Biophys Res Commun. 2003; 303: 364-369
        • Poynten A.M.
        • Gan S.K.
        • Kriketos A.D.
        • O’Sullivan A.
        • Kelly J.J.
        • Ellis B.A.
        • Chisholm D.J.
        • Campbell L.V.
        Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content.
        Metabolism. 2003; 52: 699-704
        • Yu X.X.
        • Murray S.F.
        • Pandey S.K.
        • Booten S.L.
        • Bao D.
        • Song X.Z.
        • Kelly S.
        • Chen S.
        • McKay R.
        • Monia B.P.
        • Bhanot S.
        Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice.
        Hepatology. 2005; 42: 362-371
        • Blum C.B.
        • Levy R.I.
        • Eisenberg S.
        • Hall M.
        • Goebel R.H.
        • Berman M.
        High density lipoprotein metabolism in man.
        J Clin Invest. 1977; 60: 795-807
        • Shepherd J.
        • Packard C.J.
        • Patsch J.R.
        • Gotto M.
        • Taunton O.D.
        Effect of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism.
        J Clin Invest. 1979; 63: 858-867
        • Jin F.Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin decreases removal of high density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells.
        Arterioscler Thromb Vasc Biol. 1997; 17: 2020-2028
        • Acton S.
        • Riggoti A.
        • Landschutz K.T.
        • Xu S.
        • Hobbs H.H.
        • Krieger M.
        Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.
        Science. 1996; 271: 518-520
        • Martinez L.O.
        • Jacquet S.
        • Esteve J.P.
        • Rolland C.
        • Cabezon E.
        • Champagne E.
        • Pineau T.
        • Georgeand V.
        • Walker J.E.
        • Terce F.
        • et al.
        Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis.
        Nature. 2003; 421: 75-79
        • Zhang L.H.
        • Meyers C.D.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin inhibits β chain ATP synthase cell surface expression in HepG2 cells.
        Artrioscler Thromb Vasc Biol. 2006; 26 ([abstract]): E-53
        • Rubic T.
        • Trottmann M.
        • Lorenz R.L.
        Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin.
        Biochem Pharmacol. 2004; 67: 411-419
        • Jacobson E.L.
        • Jacobson M.K.
        A biomarker for the assessment of niacin nutriture as a potential preventive factor in carcinogenesis.
        J Intern Med. 1993; 233: 59-62
        • Yan Q.
        • Briehl M.
        • Crowley C.L.
        • Payne C.M.
        • Bernstein H.
        • Bernstein C.
        The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehydes-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells.
        Biochem Biophys Res Commun. 1999; 255: 133-136
        • Ganji S.H.
        • Qin S.
        • Liu Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin inhibits LDL oxidation and redox-sensitive VCAM-1 and MCP-1 expression in human aortic endothelial cells.
        Artrioscler Thromb Vasc Biol. 2004; 24 ([abstract]): E-125
        • Morrow J.D.
        • Parsons W.G.
        • Roberts L.J.
        Release of markedly increased quantities of prostaglandin D2 in vivo in humans following the administration of nicotinic acid.
        Prostaglandins. 1989; 38: 263-274
        • Benyo Z.
        • Gille A.
        • Bennett C.L.
        • Clausen B.E.
        • Offermanns S.
        Nicotinic acid-induced flushing is mediated by activation of epidermal Langerhans cells.
        Mol Pharmacol. 2006; 70: 1844-1849
        • Maciejewski-Lenoir D.
        • Richman J.G.
        • Hakak Y.
        • Gaidarov I.
        • Behan D.P.
        • Connolly D.T.
        Langerhans cells release prostaglandin D2 in response to nicotinic acid.
        J Invest Dermatol. 2006; 126: 2637-2646
        • Meyers C.D.
        • Liu P.
        • Kamanna V.S.
        • Kashyap M.L.
        Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush.
        Atherosclerosis. 2007; 192: 253-258
        • Benyo Z.
        • Gille A.
        • Kero J.
        • Csiky M.
        • Suchankova M.C.
        • Nusing R.M.
        • Moers A.
        • Pfeffer K.
        • Offermanns S.
        GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.
        J Clin Invest. 2005; 115: 3634-3640
        • Cheng K.
        • Wu T.J.
        • Sturino C.
        • Metters K.
        • Gottesdiener K.
        • Wright S.D.
        • Wang Z.
        • O’Neill G.
        • Lai E.
        • Waters M.G.
        Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans.
        Proc Natl Acad Sci U S A. 2006; 103: 6682-6687