Advertisement

Relation Between Plasma Adiponectin, High-Sensitivity C-Reactive Protein, and Coronary Plaque Components in Patients With Acute Coronary Syndrome

Published:November 23, 2007DOI:https://doi.org/10.1016/j.amjcard.2007.07.041
      The present study investigated the relation between plasma high-sensitivity C-reactive protein (hs-CRP) and adiponectin and coronary plaque components in patients with acute coronary syndrome (ACS). Previous studies showed a pivotal role of inflammation in the progression of atherosclerosis and the prognostic value of several biomarkers. However, relations among inflammatory biomarkers and plaque characteristics were unknown. Ninety-three culprit plaques (ACS n = 50, non-ACS n = 43) and 56 nonculprit plaques (ACS n = 28, non-ACS n = 28) were analyzed using Virtual Histology intravascular ultrasound to examine relations among plasma hs-CRP, adiponectin, and ratios of each coronary plaque component. Plasma adiponectin was significantly lower and plasma hs-CRP was significantly higher in patients with than without ACS. Culprit plaques in patients with ACS had greater amounts of necrotic core plaque than those in patients without ACS. There was an inverse relation between serum hs-CRP and adiponectin with regard to necrotic core ratio in both culprit and nonculprit lesions in patients with ACS, but not those without ACS. In conclusion, increased plasma hs-CRP and hypoadiponectinemia might be related to the progression of ACS.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • Maeda K.
        • Kuriyama H.
        • Okamoto Y.
        • Hotta K.
        • Nishida M.
        • Takahashi M.
        • Nakamura T.
        • et al.
        Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
        Circulation. 1999; 100: 2473-2476
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • Nishida M.
        • Matsuyama A.
        • Okamoto Y.
        • Ishigami M.
        • Kuriyama H.
        • Kishida K.
        • Nishizawa H.
        • et al.
        Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
        Circulation. 2001; 103: 1057-1063
        • Engeli S.
        • Feldpausch M.
        • Gorzelniak K.
        • Hartwig F.
        • Heintze U.
        • Janke J.
        • Mohlig M.
        • Pfeiffer A.F.
        • Luft F.C.
        • Sharma A.M.
        Association between adiponectin and mediators of inflammation in obese women.
        Diabetes. 2003; 52: 942-947
        • Yudkin J.S.
        • Stehouwer C.D.
        • Emeis J.J.
        • Coppack S.W.
        C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?.
        Arterioscler Thromb Vasc Biol. 1999; 19: 972-978
        • Katritsis D.
        • Korovesis S.
        • Giazitzoglou E.
        • Parissis J.
        • Kalivas P.
        • Webb-Peploe M.M.
        • Ioannidis J.P.
        • Haliassos A.
        C-reactive protein concentrations and angiographic characteristics of coronary lesions.
        Clin Chem. 2001; 47: 882-886
        • Otsuka F.
        • Sugiyama S.
        • Kojima S.
        • Maruyoshi H.
        • Funahashi T.
        • Matsui K.
        • Sakamoto T.
        • Yoshimura M.
        • Kimura K.
        • Umemura S.
        • Ogawa H.
        Plasma adiponectin levels are associated with coronary lesion complexity in men with coronary artery disease.
        J Am Coll Cardiol. 2006; 48: 1155-1162
        • Nair A.
        • Kuban B.D.
        • Tuzcu E.M.
        • Schoenhagen P.
        • Nissen S.E.
        • Vince D.G.
        Coronary plaque classification with intravascular ultrasound radiofrequency data analysis.
        Circulation. 2002; 106: 2200-2206
        • Gronenschild E.
        • Janssen J.
        • Tijdens F.
        CASS II: a second generation system for off-line and on-line quantitative coronary angiography.
        Cathet Cardiovasc Diagn. 1994; 33: 61-75
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Torzewski J.
        • Torzewski M.
        • Bowyer D.E.
        • Frohlich M.
        • Koenig W.
        • Waltenberger J.
        • Fitzsimmons C.
        • Hombach V.
        C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries.
        Arterioscler Thromb Vasc Biol. 1998; 18: 1386-1392
        • Yasojima K.
        • Schwab C.
        • McGeer E.G.
        • McGeer P.L.
        Generation of C-reactive protein and complement components in atherosclerotic plaques.
        Am J Pathol. 2001; 158: 1039-1057
        • Ishikawa T.
        • Imamura T.
        • Hatakeyama K.
        • Date H.
        • Nagoshi T.
        • Kawamoto R.
        • Matsuyama A.
        • Asada Y.
        • Eto T.
        Possible contribution of C-reactive protein within coronary plaque to increasing its own plasma levels across coronary circulation.
        Am J Cardiol. 2004; 93: 611-614
        • Ishikawa T.
        • Hatakeyama K.
        • Imamura T.
        • Date H.
        • Shibata Y.
        • Hikichi Y.
        • Asada Y.
        • Eto T.
        Involvement of C-reactive protein obtained by directional coronary atherectomy in plaque instability and developing restenosis in patients with stable or unstable angina pectoris.
        Am J Cardiol. 2003; 91: 287-292
        • Kobayashi S.
        • Inoue N.
        • Ohashi Y.
        • Terashima M.
        • Matsui K.
        • Mori T.
        • Fujita H.
        • Awano K.
        • Kobayashi K.
        • Azumi H.
        • et al.
        Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1398-1404
        • Virmani R.
        • Burke A.P.
        • Kolodgie F.D.
        • Farb A.
        Pathology of thin-cap fibroatheroma: a type of vulnerable plaque.
        J Interv Cardiol. 2003; 16: 267-272
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1262-1275
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • Tracy R.P.
        • Hennekens C.H.
        Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.
        N Engl J Med. 1997; 336: 973-979
        • Ridker P.M.
        • Buring J.E.
        • Shih J.
        • Matias M.
        • Hennekens C.H.
        Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women.
        Circulation. 1998; 98: 731-733
        • Matsuzawa Y.
        • Funahashi T.
        • Nakamura T.
        Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances.
        Ann N Y Acad Sci. 1999; 892: 146-154
        • Okamoto Y.
        • Kihara S.
        • Ouchi N.
        • Nishida M.
        • Arita Y.
        • Kumada Y.
        • Ohashi K.
        • Sakai N.
        • Shimomura I.
        • Kobayashi H.
        • et al.
        Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2002; 106: 2767-2770
        • Pischon T.
        • Girman C.J.
        • Hotamisligil G.S.
        • Rifai N.
        • Hu F.B.
        • Rimm E.B.
        Plasma adiponectin levels and risk of myocardial infarction in men.
        JAMA. 2004; 291: 1730-1737
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • Takahashi M.
        • Maeda K.
        • Miyagawa J.
        • Hotta K.
        • Shimomura I.
        • Nakamura T.
        • Miyaoka K.
        • et al.
        Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
        Biochem Biophys Res Commun. 1999; 257: 79-83
        • Visser M.
        • Bouter L.M.
        • McQuillan G.M.
        • Wener M.H.
        • Harris T.B.
        Elevated C-reactive protein levels in overweight and obese adults.
        JAMA. 1999; 282: 2131-2135
        • Tchernof A.
        • Nolan A.
        • Sites C.K.
        • Ades P.A.
        • Poehlman E.T.
        Weight loss reduces C-reactive protein levels in obese postmenopausal women.
        Circulation. 2002; 105: 564-569
        • Hotta K.
        • Funahashi T.
        • Arita Y.
        • Takahashi M.
        • Matsuda M.
        • Okamoto Y.
        • Iwahashi H.
        • Kuriyama H.
        • Ouchi N.
        • Maeda K.
        • et al.
        Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1595-1599
        • Ouchi N.
        • Kihara S.
        • Funahashi T.
        • Nakamura T.
        • Nishida M.
        • Kumada M.
        • Okamoto Y.
        • Ohashi K.
        • Nagaretani H.
        • Kishida K.
        • et al.
        Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue.
        Circulation. 2003; 107: 671-674
        • Nakano Y.
        • Tajima S.
        • Yoshimi A.
        • Akiyama H.
        • Tsushima M.
        • Tanioka T.
        • Negoro T.
        • Tomita M.
        • Tobe T.
        A novel enzyme-linked immunosorbent assay specific for high-molecular-weight adiponectin.
        J Lipid Res. 2006; 47: 1572-1582