Advertisement

Time Course of Microvascular Resistance of the Infarct and Noninfarct Coronary Artery Following an Anterior Wall Acute Myocardial Infarction

Published:February 27, 2006DOI:https://doi.org/10.1016/j.amjcard.2005.11.026
      Previous studies have suggested that coronary flow velocity reserve (CFVR) in the early phase of acute myocardial infarction (AMI) is abnormal in infarcted and remote regions. This study determined the coronary microvascular resistance of infarct-related arteries (IRAs) and non-IRAs during AMI and at follow-up in patients who were treated with primary percutaneous intervention. In 73 patients with a first anterior wall AMI, baseline and minimal microvascular resistance in IRAs and non-IRAs immediately after reperfusion and at 1-week and 6-month follow-up were calculated as the ratio of mean transvascular pressure gradient to mean baseline and to adenosine-induced hyperemic blood flow velocity, respectively. CFVR in IRAs increased from 1.6 ± 0.4 after reperfusion to 1.9 ± 0.5 at 1 week and to 3.0 ± 0.8 at 6 months (p <0.0001) and in non-IRAs from 2.4 ± 0.5 to 2.7 ± 0.6 at 1 week to 3.3 ± 0.6 at 6 months (p <0.0001). Minimal microvascular resistance in IRAs and non-IRAs (3.2 ± 1.7 and 2.2 ± 0.6 mm Hg/second/cm, respectively) decreased significantly at follow-up (2.0 ± 0.6 and 1.7 ± 0.6 mm Hg/second/cm at 1 week and 1.8 ± 0.6 and 1.8 ± 0.7 mm Hg/second/cm at 6 months, respectively). After correction for rate–pressure product, baseline microvascular resistance after reperfusion and at 6 months did not significantly differ between IRAs and non-IRAs. In conclusion, minimal microvascular resistance is higher in infarcted and noninfarcted regions during AMI than at follow-up. The low CFVR in remote regions during AMI is probably due more to disturbed autoregulation than to increased myocardial workload.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • The TIMI Study Group
        The Thrombolysis In Myocardial Infarction (TIMI) trial.
        N Engl J Med. 1985; 312: 932-936
        • Ambrosio G.
        • Weisman H.F.F.
        • Mannisi J.A.F.
        • Becker L.C.
        Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow.
        Circulation. 1989; 80: 1846-1861
        • Ishihara M.
        • Sato H.
        • Tateishi H.
        • Kawagoe T.
        • Yoshimura M.
        • Muraoka Y.
        Impaired coronary flow reserve immediately after coronary angioplasty in patients with acute myocardial infarction.
        Br Heart J. 1993; 69: 288-292
        • Kloner R.A.
        • Ganote C.E.
        • Jennings R.B.
        The “no-reflow” phenomenon after temporary coronary occlusion in the dog.
        J Clin Invest. 1974; 54: 1496-1508
        • Ishihara M.
        • Sato H.
        • Tateishi H.
        • Kawagoe T.
        • Shimatani Y.
        • Kurisu S.
        • Sakai K.
        Time course of impaired coronary flow reserve after reperfusion in patients with acute myocardial infarction.
        Am J Cardiol. 1996; 78: 1103-1108
        • Stempfle H.U.
        • Schmid R.
        • Tausig A.
        • Auer V.
        • Hacker M.
        • Schiele T.M.
        • Hahn K.
        • Klauss V.
        Early detection of myocardial microcirculatory disturbances after primary PTCA in patients with acute myocardial infarction.
        Z Kardiol. 2002; 91: 126-131
        • Uren N.G.
        • Crake T.
        • Lefroy D.C.
        • de Silva R.
        • Davies G.J.
        • Maseri A.
        Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction.
        N Engl J Med. 1994; 331: 222-227
        • Stewart R.E.
        • Miller D.D.
        • Bowers T.R.
        • McCullough P.A.
        • Ponto R.A.
        • Grines C.L.
        • O’Neill W.W.
        • Juni J.E.
        • Safian R.D.
        PET perfusion and vasodilator function after angioplasty for acute myocardial infarction.
        J Nucl Med. 1997; 38: 770-777
        • MacLean M.
        • Biro G.
        Time course of myocardial bloodflow changes during healing myocardial infarct in pigs.
        Can J Cardiol. 1992; 8: 749-755
        • Daher E.
        • Dione D.P.F.
        • Heller E.N.F.
        • Holahan J.
        • DeMan P.
        • Shen M.
        • Hu J.
        • Sinusas A.J.
        Acute ischemic dysfunction alters coronary flow reserve in remote nonischemic regions.
        J Nucl Cardiol. 2000; 7: 112-122
        • van’t Hof A.W.
        • Liem A.
        • Suryapranata H.
        • Hoorntje J.C.F.
        • de Boer M.J.F.
        • Zijlstra F.
        Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction.
        Circulation. 1998; 97: 2302-2306
        • Gibson C.M.
        • Cannon C.P.
        • Daley W.L.
        • Dodge Jr, J.T.
        • Alexander
        • Marble S.J.
        • McCabe C.H.
        • Raymond L.
        • Fortin T.
        • Poole K.
        • Braunwald E.
        TIMI frame count.
        Circulation. 1996; 93: 879-888
        • Sambuceti G.
        • Marzilli M.
        • Marraccini P.
        • Schneider-Eicke J.
        • Gliozheni E.
        • Parodi O.
        • L’Abbate A.
        Coronary vasoconstriction during myocardial ischemia induced by rises in metabolic demand in patients with coronary artery disease.
        Circulation. 1997; 95: 2652-2659
        • Meuwissen M.
        • Chamuleau S.A.J.
        • Siebes M.
        • Schotborgh C.E.
        • Koch K.T.
        • de Winter R.J.
        • Bax M.
        • de Jong A.
        • Spaan J.A.E.
        • Piek J.J.
        Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions.
        Circulation. 2001; 103: 184-187
        • Chamuleau S.A.
        • Siebes M.
        • Meuwissen M.
        • Koch K.T.
        • Spaan J.A.
        • Piek J.J.
        Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease.
        Am J Physiol Heart Circ Physiol. 2003; 285: H2194-H2200
        • Marzilli M.
        • Sambuceti G.
        • Fedele S.
        • L’Abbate A.
        Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina.
        J Am Coll Cardiol. 2000; 35: 327-334
        • Rochitte C.E.
        • Lima J.A.C.
        • Bluemke D.A.
        • Reeder S.B.
        • McVeigh E.R.
        • Furuta T.
        • Becker L.C.
        • Melin J.A.
        Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction.
        Circulation. 1998; 98: 1006-1014
        • Gregorini L.
        • Fajadet J.
        • Robert G.
        • Cassagneau B.
        • Bernis M.
        • Marco J.
        Coronary vasoconstriction after percutaneous transluminal coronary angioplasty is attenuated by antiadrenergic agents.
        Circulation. 1994; 90: 895-907
        • Gibson C.M.
        • Ryan K.A.
        • Murphy S.A.
        • Mesley R.
        • Marble S.J.
        • Giugliano R.P.
        • Cannon C.P.
        • Antman E.M.
        • Braunwald E.
        Impaired coronary blood flow in nonculprit arteries in the setting of acute myocardial infarction. The TIMI Study Group. Thrombolysis In Myocardial Infarction.
        J Am Coll Cardiol. 1999; 34: 974-982