Usefulness of Mitral Annular Velocity in Predicting Exercise Tolerance in Patients With Impaired Left Ventricular Systolic Function

Published:February 17, 2006DOI:
      Left ventricular (LV) diastolic function is 1 of the determinants of exercise tolerance. However, the relation between early diastolic velocity of the mitral annulus (Ea) obtained by tissue Doppler imaging and exercise tolerance is unknown in patients with impaired LV systolic function. To investigate the feasibility of evaluating exercise tolerance using tissue Doppler imaging, we studied 53 consecutive patients (mean age 58 ± 14 years) with a LV ejection fraction of <50% (mean 37 ± 9%). We measured the peak early diastolic velocity of transmitral flow (E) and Ea at the lateral border of the mitral annulus and then calculated the E/Ea ratio. After echocardiography, we measured the peak oxygen consumption and anaerobic threshold (AT) by cardiopulmonary exercise testing. Of all the echocardiographic parameters, the best correlation for AT was the E/Ea ratio (r = −0.74, p <0.001). Peak oxygen consumption correlated well with Ea and the E/Ea ratio (r = 0.64 and r = −0.68, respectively, p <0.001). The AT and peak oxygen consumption did not correlate with conventional Doppler indexes. Using an AT of 8 ml/min/kg as the cutoff to separate severe exercise intolerance from normal, mild, or moderate exercise intolerance, a receiver-operating characteristic curve showed that an E/Ea ratio of >11.3 had the best combination of sensitivity (88%) and specificity (86%). Exercise tolerance correlated with the E/Ea ratio in patients with impaired LV systolic function. In conclusion, the evaluation of LV diastolic function using tissue Doppler imaging is useful for predicting exercise tolerance in patients with heart failure.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sohn D.-W.
        • Chai I.-H.
        • Lee D.-J.
        • Kim H.-C.
        • Kim H.-S.
        • Oh B.-H.
        • Lee M.-M.
        • Park Y.-B.
        • Choi Y.-S.
        • Seo J.-D.
        • Lee Y.-W.
        Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function.
        J Am Coll Cardiol. 1997; 30: 474-480
        • Nagueh S.F.
        • Middleton K.J.
        • Kopelen H.A.
        • Zoghbi W.A.
        • Quinones M.A.
        Doppler tissue imaging.
        J Am Coll Cardiol. 1997; 30: 1527-1533
        • Hadano Y.
        • Murata K.
        • Liu J.
        • Oyama R.
        • Harada N.
        • Okuda S.
        • Hamada Y.
        • Tanaka N.
        • Matsuzaki M.
        Can transthoracic Doppler echocardiography predict the discrepancy between left ventricular end-diastolic pressure and mean pulmonary capillary wedge pressure in patients with heart failure?.
        Circ J. 2005; 69: 432-438
        • Weber K.T.
        • Janicki J.S.
        • McElroy P.A.
        Cardiopulmonary exercise (CPX) testing.
        in: Weber K.T. Janicki J.S. Cardiopulmonary Exercise Testing. WB Saunders, Philadelphia1986: 151-167
        • Okura H.
        • Inoue H.
        • Tomon M.
        • Nishiyama S.
        • Yoshikawa T.
        • Yoshida K.
        • Yoshikawa J.
        Impact of Doppler-derived left ventricular diastolic performance on exercise capacity in normal individuals.
        Am Heart J. 2000; 139: 716-722
        • Matsumura Y.
        • Elliott P.M.
        • Virdee M.S.
        • Sorajja P.
        • Doi Y.
        • McKenna W.J.
        Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy.
        Heart. 2002; 87: 247-251
        • Kim H.-K.
        • Kim Y.-J.
        • Cho Y.-S.
        • Sohn D.-W.
        • Lee M.-M.
        • Park Y.-B.
        • Choi Y.-S.
        Determinants of exercise capacity in hypertensive patients.
        Am J Hypertens. 2003; 16: 564-569
        • Skaluba S.J.
        • Litwin S.E.
        Mechanisms of exercise intolerance.
        Circulation. 2004; 109: 972-977
        • Lapu-Bula R.
        • Robert A.
        • de Kock M.
        • D’Hondt A.-M.
        • Detry J.-M.
        • Melin J.A.
        • Vanoverschelde J.-L.
        Relation of exercise capacity to left ventricular systolic function and diastolic filling in idiopathic or ischemic dilated cardiomyopathy.
        Am J Cardiol. 1999; 83: 728-734
        • Appleton C.P.
        • Hatle L.K.
        • Popp R.L.
        Relation of transmitral flow velocity patterns to left ventricular diastolic function.
        J Am Coll Cardiol. 1988; 12: 426-440
        • Giannuzzi P.
        • Imparato A.
        • Temporelli P.L.
        • de Vito F.
        • Silva P.L.
        • Scapellato F.
        • Giordano A.
        Doppler-derived mitral deceleration time of early filling as a strong predictor of pulmonary capillary wedge pressure in postinfarction patients with left ventricular systolic dysfunction.
        J Am Coll Cardiol. 1994; 23: 1630-1637
        • Yamamoto K.
        • Nishimura R.A.
        • Chaliki H.P.
        • Appleton C.P.
        • Holmes Jr, D.R.
        • Redfield M.M.
        Determination of left ventricular filling pressure by Doppler echocardiography in patients with coronary artery disease.
        J Am Coll Cardiol. 1997; 30: 1819-1826
        • Ommen S.R.
        • Nishimura R.A.
        • Appleton C.P.
        • Miller F.A.
        • Oh J.K.
        • Redfield M.M.
        • Tajik A.J.
        Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures.
        Circulation. 2000; 102: 1788-1794
        • Rivas-Gotz C.
        • Manolios M.
        • Thohan V.
        • Nagueh S.F.
        Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity.
        Am J Cardiol. 2003; 91: 780-784
        • Dokainish H.
        • Zoghbi W.A.
        • Lakkis N.M.
        • Al-Bakshy F.
        • Dhir M.
        • Quinones M.A.
        • Nagueh S.F.
        Optimal noninvasive assessment of left ventricular filling pressures.
        Circulation. 2004; 109: 2432-2439
        • Szlachcic J.
        • Massie B.M.
        • Kramer B.L.
        • Topic N.
        • Tubau J.
        Correlates and prognostic implication of exercise capacity in chronic congestive heart failure.
        Am J Cardiol. 1985; 55: 1037-1042
        • Kitzman D.W.
        • Higginbotham M.B.
        • Cobb F.R.
        • Sheikh K.H.
        • Sullivan M.J.
        Exercise intolerance in patients with heart failure and preserved left ventricular systolic function.
        J Am Coll Cardiol. 1991; 17: 1065-1072
        • Takatsuji H.
        • Mikami T.
        • Urasawa K.
        • Teranishi J.
        • Onozuka H.
        • Takagi C.
        • Makita Y.
        • Matsuo H.
        • Kusuoka H.
        • Kitabatake A.
        A new approach for evaluation of left ventricular diastolic function.
        J Am Coll Cardiol. 1996; 27: 365-371
        • Garcia M.J.
        • Ares M.A.
        • Asher C.
        • Rodriguez L.
        • Vandervoort P.
        • Thomas J.D.
        An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure.
        J Am Coll Cardiol. 1997; 29: 448-454