Mechanisms for the Hypotriglyceridemic Effect of Marine Omega-3 Fatty Acids

      A mechanism to explain the hypotriglyceridemic effects of marine omega-3 fatty acids in humans has not been clarified. A working model can be developed at the gene transcriptional level, which involves ≥4 metabolic nuclear receptors. These include liver X receptor, hepatocyte nuclear factor–4α (HNF-4α), farnesol X receptor, and peroxisome proliferator–activated receptors (PPARs). Each of these receptors is regulated by sterol receptor element binding protein–1c (SREBP-1c), the main genetic switch controlling lipogenesis. Omega-3 fatty acids elicit hypotriglyceridemic effects by coordinately suppressing hepatic lipogenesis through reducing levels of SREBP-1c, upregulating fatty oxidation in the liver and skeletal muscle through PPAR activation, and enhancing flux of glucose to glycogen through downregulation of HNF-4α. The net result is the repartitioning of metabolic fuel from triglyceride storage toward oxidation, thereby reducing the substrate available for very-low-density lipoprotein (VLDL) synthesis. By simultaneously downregulating genes encoding proteins that stimulate lipid synthesis and upregulating genes encoding proteins that stimulate fatty acid oxidation, omega-3 fatty acids are more potent hypotriglyceridemic agents than are omega-6 fatty acids, on a carbon-for-carbon basis. Additionally, peroxidation of omega-3 fatty acids may reduce VLDL secretion through stimulating apolipoprotein B degradation. Omega-3 fatty acids may act by enhancing postprandial chylomicron clearance through reduced VLDL secretion and by directly stimulating lipoprotein lipase activity. These combined effects support the use of omega-3 fatty acids as a valuable clinical tool for the treatment of hypertriglyceridemia.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Phillipson B.E.
        • Rothrock D.W.
        • Connor W.E.
        • Harris W.S.
        • Illingworth D.R.
        Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia.
        N Engl J Med. 1985; 312: 1210-1216
        • Harris W.S.
        n-3 Fatty acids and serum lipoproteins.
        Am J Clin Nutr. 1997; 65: 1645S-1654S
        • Maki K.C.
        • Van Elswyk M.E.
        • McCarthy D.
        • Hess S.P.
        • Veith P.E.
        • Bell M.
        • Subbaiah P.
        • Davidson M.H.
        Lipid responses to a dietary docosahexaenoic acid supplement in men and women with below average levels of high density lipoprotein cholesterol.
        J Am Coll Nutr. 2005; 24: 189-199
        • Davidson M.H.
        • Maki K.C.
        • Kalkowski J.
        • Schaefer E.J.
        • Torri S.A.
        • Drennan K.B.
        Effects of docosahexaenoic acid on serum lipoproteins in patients with combined hyperlipidemia.
        J Am Coll Nutr. 1997; 16: 236-243
        • Park Y.
        • Harris W.S.
        Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance.
        J Lipid Res. 2003; 44: 455-463
        • Kersten S.
        • Seydoux J.
        • Peters J.M.
        • Gonzalez F.J.
        • Desvergne B.
        • Wahli W.
        Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting.
        J Clin Invest. 1999; 103: 1489-1498
        • Pegorier J.P.
        • Le May C.
        • Girard J.
        Control of gene expression by fatty acids.
        J Nutr. 2004; 134: 2444S-2449S
        • Kersten S.
        Mechanisms of nutritional and hormonal regulation of lipogenesis.
        EMBO Rep. 2001; 2: 282-286
        • Shelness G.S.
        • Sellers J.A.
        Very-low-density lipoprotein assembly and secretion.
        Curr Opin Lipidol. 2001; 12: 151-157
        • Clarke S.D.
        Polyunsaturated fatty acid regulation of gene transcription.
        J Nutr. 2001; 131: 1129-1132
        • Price P.T.
        • Nelson C.M.
        • Clarke S.D.
        Omega-3 polyunsaturated fatty acid regulation of gene expression.
        Curr Opin Lipidol. 2000; 11: 3-7
        • Jump D.B.
        • Clarke S.D.
        Regulation of gene expression by dietary fat.
        Annu Rev Nutr. 1999; 19: 63-90
        • Pawar A.
        • Botolin D.
        • Mangelsdorf D.J.
        • Jump D.B.
        The role of liver X receptor-α in the fatty acid regulation of hepatic gene expression.
        J Biol Chem. 2003; 278: 40736-40743
        • Xu J.
        • Nakamura M.T.
        • Cho H.P.
        • Clarke S.D.
        Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids.
        J Biol Chem. 1999; 274: 23577-23583
        • Coleman R.A.
        • Lee D.P.
        Enzymes of triacylglycerol synthesis and their regulation.
        Prog Lipid Res. 2004; 43: 134-176
        • Hertz R.
        • Sheena V.
        • Kalderon B.
        • Berman I.
        • Bar-Tana J.
        Suppression of hepatocyte nuclear factor-4α by acyl-CoA thioesters of hypolipidemic peroxisome proliferators.
        Biochem Pharmacol. 2001; 61: 1057-1062
        • Claudel T.
        • Staels B.
        • Kuipers F.
        The Farnesoid X receptor.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2020-2030
        • Sirvent A.
        • Claudel T.
        • Martin G.
        • Brozek J.
        • Kosykh V.
        • Darteil R.
        • Hum D.W.
        • Fruchart J.C.
        • Staels B.
        The farnesoid X receptor induces very low density lipoprotein receptor gene expression.
        FEBS Lett. 2004; 566: 173-177
        • Claudel T.
        • Inoue Y.
        • Barbier O.
        • Duran-Sandoval D.
        • Kosykh V.
        • Fruchart J.
        • Fruchart J.C.
        • Gonzalez F.J.
        • Staels B.
        Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression.
        Gastroenterology. 2003; 125: 544-555
        • Zhao A.
        • Yu J.
        • Lew J.L.
        • Huang L.
        • Wright S.D.
        • Cui J.
        Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets.
        DNA Cell Biol. 2004; 23: 519-526
        • Jump D.B.
        The biochemistry of n-3 polyunsaturated fatty acids.
        J Biol Chem. 2002; 277: 8755-8758
        • Pawar A.
        • Jump D.B.
        Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes.
        J Biol Chem. 2003; 278: 35931-35939
        • Clarke S.D.
        • Turini M.
        • Jump D.B.
        • Abraham S.
        • Reedy M.
        Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.
        Z Ernahrungswiss. 1998; 37: 14-20
        • Krey G.
        • Braissant O.
        • L’Horset F.
        • Kalkhoven E.
        • Perroud M.
        • Parker M.G.
        • Wahli W.
        Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay.
        Mol Endocrinol. 1997; 11: 779-791
        • Li H.
        • Ruan X.Z.
        • Powis S.H.
        • Fernando R.
        • Mon W.Y.
        • Wheeler D.C.
        • Moorhead J.F.
        • Varghese Z.
        EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells.
        Kidney Int. 2005; 67: 867-874
        • Worgall T.S.
        • Sturley S.L.
        • Seo T.
        • Osborne T.F.
        • Deckelman R.J.
        Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element binding protein.
        J Biol Chem. 1998; 273: 25537-25540
        • Mater M.K.
        • Thelen A.P.
        • Pan D.A.
        • Jump D.B.
        Sterol response element binding protein 1c (SREBP-1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription.
        J Biol Chem. 1999; 274: 32725-32732
        • Watanabe M.
        • Houten S.M.
        • Wang L.
        • Moschetta A.
        • Mangelsdorf D.J.
        • Heyman R.A.
        • Moore D.D.
        • Auwerx J.
        Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c.
        J Clin Invest. 2004; 113: 1408-1418
        • Yoshikawa T.
        • Ide T.
        • Shimano H.
        • Yahagi N.
        • Amemiya-Kudo M.
        • Matsuzaka T.
        • Yatoh S.
        • Kitamine T.
        • Okazaki H.
        • Tamura Y.
        • et al.
        Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling.
        Mol Endocrinol. 2003; 17: 1240-1254
        • Pan M.
        • Cederbaum A.I.
        • Zhang Y.-L.
        • Ginsberg H.N.
        • Williams K.J.
        • Fisher E.A.
        Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production.
        J Clin Invest. 2004; 113: 1277-1287
        • Krauss R.M.
        Hold the antioxidants and improve plasma lipids?.
        J Clin Invest. 2004; 113: 1253-1255
        • Heart Protection Study Collaborative Group
        MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals.
        Lancet. 2002; 360: 23-33
        • Calabresi L.
        • Donati D.
        • Pazzacconi F.
        • Sirtori C.R.
        • Franceschini G.
        Omacor in familial combined hyperlipidemia.
        Atherosclerosis. 2000; 148: 387-396
        • Eritsland J.
        • Arnesen H.
        • Seljeflot I.
        • Hostmark A.T.
        Long-term metabolic effects of n-3 polyunsaturated fatty acids in patients with coronary artery disease.
        Am J Clin Nutr. 1995; 61: 831-836