Advertisement

Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease

  • Samy I McFarlane
    Affiliations
    Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and Cell Biology at State University of New York, Health Science Center at Brooklyn, Brooklyn, New York, USA

    Kings County Hospital Center, Brooklyn, New York, USA

    Veterans Affairs Medical Centers of Brooklyn, Brooklyn, New York, USA
    Search for articles by this author
  • Ashok Kumar
    Affiliations
    Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and Cell Biology at State University of New York, Health Science Center at Brooklyn, Brooklyn, New York, USA

    Kings County Hospital Center, Brooklyn, New York, USA

    Veterans Affairs Medical Centers of Brooklyn, Brooklyn, New York, USA
    Search for articles by this author
  • James R Sowers
    Correspondence
    Address for reprints: James R. Sowers, MD, Diabetes and Hypertension Division, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Box 1205, Brooklyn, New York, USA 11203.
    Affiliations
    Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and Cell Biology at State University of New York, Health Science Center at Brooklyn, Brooklyn, New York, USA

    Kings County Hospital Center, Brooklyn, New York, USA

    Veterans Affairs Medical Centers of Brooklyn, Brooklyn, New York, USA
    Search for articles by this author

      Abstract

      Angiotensin-converting enzyme (ACE) inhibitors are the first-line therapeutic agents for treating hypertension in patients with the cardiometabolic syndrome and those with diabetes. ACE inhibitor therapy reduces both microvascular and macrovascular complications in diabetes and appears to improve insulin sensitivity and glucose metabolism. Several recent studies indicate that ACE inhibitor therapy reduces the development of type 2 diabetes in persons with essential hypertension, a population with a high prevalence of insulin resistance. ACE inhibitor therapy has been shown to improve surrogates of cardiovascular disease (eg, vascular compliance, endothelial-derived nitric oxide production, vascular relaxation and plasma markers of inflammation, oxidative stress, and thrombosis) and reduce cardiovascular disease, renal disease progression, and stroke. This article explores potential mechanism by which ACE inhibition reduces the development of diabetes, improves these surrogate markers, and reduces cardiovascular disease and renal disease.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Francis G.S.
        ACE inhibition in cardiovascular disease.
        N Engl J Med. 2000; 342: 201-202
        • Kirpinchnikov D.
        • McFarlane S.
        • Winer N.
        • Weber M.
        • Sowers J.
        Effects of angiotensin-converting enzyme inhibitors on diabetic cardiovascular disease.
        in: Giles T. Angiotensin-Converting Enzyme, ACE: Clinical and Experimental Insights. Health Care Communication Inc, Fort Lee, NJ2001: 197-212
        • Heart Outcomes Prevention Evaluation Study Investigators
        Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus.
        Lancet. 2000; 355: 253-259
        • Bakris G.L.
        • Williams M.
        • Dworkin L.
        • Elliot W.J.
        • Epstein M.
        • Toto R.
        • Tuttle K.
        • Douglas J.
        • Hsueh W.
        • Sowers J.
        Preserving renal function in adults with hypertension and diabetes.
        Am J Kidney Dis. 2000; 36: 646-661
        • Niskanen L.
        • Hedner T.
        • Hansson L.
        • Lanke J.
        • Niklason A.
        • CAPP Study Group
        Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/β-blocker-based treatment regimen.
        Diabetes Care. 2001; 24: 2091-2096
        • McFarlane S.I.
        • Banerji M.
        • Sowers J.R.
        Insulin resistance and cardiovascular disease.
        J Clin Endocrinol Metab. 2001; 86: 713-718
        • Gavras H.
        • Brunner H.R.
        Role of angiotensin and its inhibition in hypertension, ischemic heart disease, and heart failure.
        Hypertension. 2001; 37: 342-345
        • Sowers J.R.
        • Epstein M.
        • Frohlich E.D.
        Diabetes, hypertension, and cardiovascular disease.
        Hypertension. 2001; 37: 1053-1059
        • Dzau V.J.
        Theodore Cooper Lecture.
        Hypertension. 2001; 37: 1047-1052
        • Naftilan A.J.
        • Zuo W.M.
        • Inglefinger J.
        • Ryan Jr, T.J.
        • Pratt R.E.
        • Dzau V.J.
        Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall.
        J Clin Invest. 1991; 87: 1300-1311
        • Paul M.
        • Wagner J.
        • Dzau V.J.
        Gene expression of the renin-angiotensin system in human tissues.
        J Clin Invest. 1993; 91: 2058-2064
        • van Kats J.P.
        • Danser A.H.
        • van Meegen J.R.
        • Sassen L.M.
        • Verdouw P.D.
        • Schalekamp M.A.
        Angiotensin production by the heart.
        Circulation. 1998; 98: 73-81
        • Jain S.
        • Tang X.
        • Narayanan C.S.
        • Agarwal Y.
        • Peterson S.M.
        • Brown C.D.
        • Ott J.
        • Kumar A.
        Angiotensinogen gene polymorphism at −217 affects basal promoter activity and is associated with hypertension in African-Americans.
        J Biol Chem. 2002; 277: 36889-36896
        • Caulfield M.
        • Lavender P.
        • Newell-Price J.
        • Farrall M.
        • Kamdar S.
        • Daniel H.
        • Lawson M.
        • De Freitas P.
        • Fogarty P.
        • Clark A.J.
        Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans.
        J Clin Invest. 1995; 96: 687-692
        • Narayanan C.S.
        • Cui Y.
        • Kumar S.
        • Kumar A.
        cAMP increases the expression of human angiotensinogen gene through a combination of cyclic AMP responsive element binding protein and a liver specific transcription factor.
        Mol Cell Biochem. 2000; 212: 81-90
        • Ushio-Fukai M.
        • Zafari A.M.
        • Fukui T.
        • Ishizaka N.
        • Griendling K.K.
        p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells.
        J Biol Chem. 1996; 271: 23317-23321
        • Laursen J.B.
        • Rajagopalan S.
        • Galis Z.
        • Tarpey M.
        • Freeman B.A.
        • Harrison D.G.
        Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension.
        Circulation. 1997; 95: 588-593
        • Sowers J.R.
        Hypertension, angiotensin II, and oxidative stress.
        N Engl J Med. 2002; 346: 1999-2001
        • Dubey R.K.
        • Jackson E.K.
        • Luscher T.F.
        Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell.
        J Clin Invest. 1995; 96: 141-149
        • Peng H.B.
        • Libby P.
        • Liao J.K.
        Induction and stabilization of I κB alpha by nitric oxide mediates inhibition of NF-kappa B.
        J Biol Chem. 1995; 270: 14214-14219
        • De Caterina R.
        • Libby P.
        • Peng H.B.
        • Thannickal V.J.
        • Rajavashisth T.B.
        • Gimbrone Jr, M.A.
        • Shin W.S.
        • Liao J.K.
        Nitric oxide decreases cytokine-induced endothelial activation.
        J Clin Invest. 1995; 96: 60-68
        • Griendling K.K.
        • Ushio-Fukai M.
        • Lassegue B.
        • Alexander R.W.
        Angiotensin II signaling in vascular smooth muscle.
        Hypertension. 1997; 29: 366-373
        • Muller D.N.
        • Mervaala E.M.
        • Dechend R.
        • Fiebeler A.
        • Park J.K.
        • Schmidt F.
        • Theuer J.
        • Breu V.
        • Mackman N.
        • Luther T.
        • et al.
        Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy.
        Am J Pathol. 2000; 157: 111-122
        • Muller D.N.
        • Dechend R.
        • Mervaala E.M.
        • Park J.K.
        • Schmidt F.
        • Fiebeler A.
        • Theuer J.
        • Breu V.
        • Ganten D.
        • Haller H.
        • Luft F.C.
        NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats.
        Hypertension. 2000; 35: 193-201
        • Vaughan D.E.
        • Lazos S.A.
        • Tong K.
        Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells.
        J Clin Invest. 1995; 95: 995-1001
        • Chen Y.Q.
        • Su M.
        • Walia R.R.
        • Hao Q.
        • Covington J.W.
        • Vaughan D.E.
        Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells.
        J Biol Chem. 1998; 273: 8225-8231
        • Schneiderman J.
        • Sawdey M.S.
        • Keeton M.R.
        • Bordin G.M.
        • Bernstein E.F.
        • Dilley R.B.
        • Loskutoff D.J.
        Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries.
        Proc Natl Acad Sci U S A. 1992; 89: 6998-7002
        • Hamsten A.
        • de Faire U.
        • Walldius G.
        • Dahlen G.
        • Szamosi A.
        • Landou C.
        • Blomback M.
        • Wiman B.
        Plasminogen activator inhibitor in plasma.
        Lancet. 1987; 2: 3-9
        • Oikawa T.
        • Freeman M.
        • Lo W.
        • Vaughan D.E.
        • Fogo A.
        Modulation of plasminogen activator inhibitor-1 in vivo.
        Kidney Int. 1997; 51: 164-172
        • Vaughan D.E.
        • Rouleau J.L.
        • Ridker P.M.
        • Arnold J.M.
        • Menapace F.J.
        • Pfeffer M.A.
        Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction.
        HEART Study Investigators. Circulation. 1997; 96: 442-447
        • Brown N.J.
        • Agirbasli M.
        • Vaughan D.E.
        Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans.
        Hypertension. 1999; 34: 285-290
        • Cohn J.N.
        • Finkelstein S.
        • McVeigh G.
        • Morgan D.
        • LeMay L.
        • Robinson J.
        • Mock J.
        Noninvasive pulse wave analysis for the early detection of vascular disease.
        Hypertension. 1995; 26: 503-508
        • Winer N.
        • Weber M.A.
        • Sowers J.R.
        The effect of antihypertensive drugs on vascular compliance.
        Curr Hypertens Rep. 2001; 3: 297-304
      1. Kool MJ, Lustermans FA, Breed JG, Struyker-Boudier HA, Hoeks AP, van Bortel LM. Effect of perindopril and amiloride/hydrochlorothiazide on haemodynamics and vessel wall properties of large arteries. J Hypertens Suppl 1993;(suppl 5):S362–S363

        • London G.M.
        • Pannier B.
        • Guerin A.P.
        • Marchais S.J.
        • Safar M.E.
        • Cuche J.L.
        Cardiac hypertrophy, aortic compliance, peripheral resistance, and wave reflection in end-stage renal disease.
        Circulation. 1994; 90: 2786-2796
        • van Bortel L.M.
        • Kool M.J.
        • Boudier H.A.
        • Struijker Boudier H.A.
        Effects of antihypertensive agents on local arterial distensibility and compliance.
        Hypertension. 1995; 26: 531-534
        • Thybo N.K.
        • Stephens N.
        • Cooper A.
        • Aalkjaer C.
        • Heagerty A.M.
        • Mulvany M.J.
        Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension.
        Hypertension. 1995; 25: 474-481
        • Shimamoto H.
        • Shimamoto Y.
        Lisinopril improves aortic compliance and renal flow.
        Hypertension. 1995; 25: 327-334
        • Breithaupt-Grogler K.
        • Leschinger M.
        • Belz G.G.
        • Butzer R.
        • Erb K.
        • de May C.
        • Sinn W.
        Influence of antihypertensive therapy with cilazapril and hydrochlorothiazide on the stiffness of the aorta.
        Cardiovasc Drugs Ther. 1996; 10: 49-57
        • Chen C.H.
        • Ting C.T.
        • Lin S.J.
        • Hsu T.L.
        • Yin F.C.
        • Siu C.O.
        • Chou P.
        • Wang S.P.
        • Chang M.S.
        Different effects of fosinopril and atenolol on wave reflections in hypertensive patients.
        Hypertension. 1995; 25: 1034-1041
        • Klemsdal T.O.
        • Moan A.
        • Kjeldsen S.E.
        Effects of selective angiotensin II type 1 receptor blockade with losartan on arterial compliance in patients with mild essential hypertension.
        Blood Press. 1999; 8: 214-219
        • Schiffrin E.L.
        • Park J.B.
        • Intengan H.D.
        • Touyz R.M.
        Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan.
        Circulation. 2000; 101: 1653-1659
        • Mahmud A.
        • Feely J.
        Favourable effects on arterial wave reflection and pulse pressure amplification of adding angiotensin II receptor blockade in resistant hypertension.
        J Hum Hypertens. 2000; 14: 541-546
        • Gress T.W.
        • Nieto F.J.
        • Shahar E.
        • Wofford M.R.
        • Brancati F.L.
        Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus.
        N Engl J Med. 2000; 342: 905-912
        • Sowers J.R.
        • Bakris G.L.
        Antihypertensive therapy and the risk of type 2 diabetes mellitus.
        N Engl J Med. 2000; 342: 969-970
        • Tuomilehto J.
        • Lindstrom J.
        • Eriksson J.G.
        • Valle T.T.
        • Hamalainen H.
        • Ilanne-Parikka P.
        • Keinanen-Kiukaanniemi S.
        • Laakso M.
        • Louheranta A.
        • Rastas M.
        • Salminen V.
        • Uusitupa M.
        Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.
        N Engl J Med. 2001; 344: 1343-1350
        • Hansson L.
        • Lindholm L.H.
        • Niskanen L.
        • Lanke J.
        • Hedner T.
        • Niklason A.
        • Luomanmaki K.
        • Dahlof B.
        • de Faire U.
        • Morlin C.
        • et al.
        Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension.
        Lancet. 1999; 353: 611-616
        • Yusuf S.
        • Sleight P.
        • Pogue J.
        • Bosch J.
        • Davies R.
        • Dagenais G.
        Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients.
        N Engl J Med. 2000; 342: 145-153
        • Lindholm L.H.
        • Ibsen H.
        • Dahlof B.
        • Devereux R.B.
        • Beevers G.
        • de Faire U.
        • Fyhrquist F.
        • Julius S.
        • Kjeldsen S.E.
        • Kristiansson K.
        • et al.
        Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE).
        Lancet. 2002; 359: 1004-1010
      2. Gerstein HC. Reduction of cardiovascular events and microvascular complications in diabetes with ACE inhibitor treatment: HOPE and MICRO-HOPE. Diabetes Metab Res Rev 2002;(suppl 3):S82–S85

      3. NAVIGATOR trial resource page. Novartis Pharma AG Web site media release. Available at: http://www/starlix.com/media_center/content/pages/nav_press_rel.php. Accessed May 14, 2003

        • Rao R.H.
        Pressor doses of angiotensin II increase hepatic glucose output and decrease insulin sensitivity in rats.
        J Endocrinol. 1996; 148: 311-318
        • Thamer M.
        • Ray N.F.
        • Taylor T.
        Association between antihypertensive drug use and hypoglycemia.
        Clin Ther. 1999; 21: 1387-1400
        • Velasquez M.T.
        • Bhathena S.J.
        • Striffler J.S.
        • Thibault N.
        • Scalbert E.
        Role of angiotensin-converting enzyme inhibition in glucose metabolism and renal injury in diabetes.
        Metabolism. 1998; 47: 7-11
        • Fogari R.
        • Zoppi A.
        • Lazzari P.
        • Preti P.
        • Mugellini A.
        • Corradi L.
        • Lusardi P.
        ACE inhibition but not angiotensin II antagonism reduces plasma fibrinogen and insulin resistance in overweight hypertensive patients.
        J Cardiovasc Pharmacol. 1998; 32: 616-620
        • Ittner K.P.
        • Zimmermann M.
        • Bucher M.
        • Gessele W.
        • Kees F.
        • Kramer B.K.
        • Grobecker H.F.
        The effect of urapidil and ramipril on hyperglycemia in streptozotocin diabetic rats.
        Naunyn Schmiedebergs Arch Pharmacol. 2000; 361: 92-97
        • Henriksen E.J.
        • Jacob S.
        • Kinnick T.R.
        • Youngblood E.B.
        • Schmit M.B.
        • Dietze G.J.
        ACE inhibition and glucose transport in insulin resistant muscle.
        Am J Physiol. 1999; 277: R332-R336
        • Dietze G.J.
        • Wicklmayr M.
        • Rett K.
        • Jacob S.
        • Henriksen E.J.
        Potential role of bradykinin in forearm muscle metabolism in humans.
        Diabetes. 1996; 45: S110-S114
        • Kudoh A.
        • Matsuki A.
        Effects of angiotensin-converting enzyme inhibitors on glucose uptake.
        Hypertension. 2000; 36: 239-244
        • Jacob S.
        • Henriksen E.J.
        • Fogt D.L.
        • Dietze G.J.
        Effects of trandolapril and verapamil on glucose transport in insulin-resistant rat skeletal muscle.
        Metabolism. 1996; 45: 535-541
        • Velloso L.A.
        • Folli F.
        • Sun X.J.
        • White M.F.
        • Saad M.J.
        • Kahn C.R.
        Cross-talk between the insulin and angiotensin signaling systems.
        Proc Natl Acad Sci U S A. 1996; 93: 12490-12495
        • Folli F.
        • Kahn C.R.
        • Hansen H.
        • Bouchie J.L.
        • Feener E.P.
        Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels.
        J Clin Invest. 1997; 100: 2158-2169
        • Nawano M.
        • Anai M.
        • Funaki M.
        • Kobayashi H.
        • Kanda A.
        • Fukushima Y.
        • Inukai K.
        • Ogihara T.
        • Sakoda H.
        • Onishi Y.
        • et al.
        Imidapril, an angiotensin-converting enzyme inhibitor, improves insulin sensitivity by enhancing signal transduction via insulin receptor substrate proteins and improving vascular resistance in the Zucker fatty rat.
        Metabolism. 1999; 48: 1248-1255
        • National Institute of Health
        Incidence and prevalence of ESRD.
        Am J Kidney Dis. 2001; 38: 38-52
        • Parving H.H.
        • Hovind P.
        • Rossing K.
        • Andersen S.
        Evolving strategies for renoprotection.
        Curr Opin Nephrol Hypertens. 2001; 10: 515-522
        • Remuzzi G.
        • Schieppati A.
        • Ruggenenti P.
        Clinical practice.
        N Engl J Med. 2002; 346: 1145-1151
        • Lewis E.J.
        • Hunsicker L.G.
        • Bain R.P.
        • Rohde R.D.
        The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.
        N Engl J Med. 1993; 329: 1456-1462
        • Lewis E.J.
        • Hunsicker L.G.
        • Clarke W.R.
        • Berl T.
        • Pohl M.A.
        • Lewis J.B.
        • Ritz E.
        • Atkins R.C.
        • Rohde R.
        • Raz I.
        Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.
        N Engl J Med. 2001; 345: 851-860
        • Brenner B.M.
        • Cooper M.E.
        • de Zeeuw D.
        • Keane W.F.
        • Mitch W.E.
        • Parving H.H.
        • Remuzzi G.
        • Snapinn S.M.
        • Zhang Z.
        • Shahinfar S.
        Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
        N Engl J Med. 2001; 345: 861-869
        • Agarwal R.
        Add-on angiotensin receptor blockade with maximized ACE inhibition.
        Kidney Int. 2001; 59: 2282-2289
        • Mogensen C.E.
        • Neldam S.
        • Tikkanen I.
        • Oren S.
        • Viskoper R.
        • Watts R.W.
        • Cooper M.E.
        Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes.
        BMJ. 2000; 321: 1440-1444