Prognostic implications of elevated whole blood choline levels in acute coronary syndromes


      Troponins I and T represent the current biomarker standard for diagnosis of myocardial infarction. Even small increases of cardiac troponins have prognostic implications, but not all patients at risk are correctly classified, particularly at admission. We identified elevated whole-blood choline as a promising marker and performed a prospective study of 327 patients with a suspected acute coronary syndrome that focused on the analysis of troponin-negative patients. Diagnostic classification of patients and the definition of troponin cutoffs were performed according to the new European Society of Cardiology/American College of Cardiology criteria. Blood was sampled serially and choline was measured using high-performance liquid chromatography mass spectrometry in whole blood. Patients were followed for 30 days. In patients with negative troponin I test results at admission (n = 250), choline was a predictor of cardiac death and nonfatal cardiac arrest (hazard ratio 6.0, p = 0.003), life-threatening arrythmias (hazard ratio 3.75, p = 0.004), heart failure (hazard ratio 2.87, p = 0.002), and coronary angioplasty (hazard ratio 2.57, p = 0.001). In multivariate analysis of troponin-negative patients, choline was the strongest predictor of cardiac death or arrest (odds ratio 6.05, p = 0.01). Choline was not a marker for myocardial necrosis but indicated high-risk unstable angina in patients without acute myocardial infarction (sensitivity 86.4%, specificity 86.2%). Thus, an increased concentration of choline at hospital admission is a predictor of adverse cardiac events in patients with suspected acute coronary syndromes. Whole blood choline may be useful for early risk stratification of these patients, particularly if troponin results are negative on admission.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wevers R.A.
        • Engelke U.
        • Heerschap A.
        High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies.
        Clin Chem. 1994; 40: 1245-1250
        • Nicholson J.K.
        • Foxall P.J.
        • Spraul M.
        • Farrant R.D.
        • Lindon J.C.
        750 MHz 1H and 1H–13C NMR spectroscopy of human blood plasma.
        Anal Chem. 1995; 67: 793-811
        • Chiang T.M.
        Activation of phospholipase D in human platelets by collagen and thrombin and its relationship to platelet aggregation.
        Biochim Biophys Acta. 1994; 1224: 147-155
        • Morris A.J.
        • Frohman M.A.
        • Engebrecht J.
        Measurement of phospholipase D activity.
        Anal Biochem. 1997; 252: 1-9
        • Altinier S.
        • Mion M.
        • Cappelletti A.
        • Zaninotto M.
        • Plebani M.
        Rapid measurement of cardiac markers on Stratus CS.
        Clin Chem. 2000; 46: 991-993
        • Möckel M.
        • Gerhardt W.
        • Heller Jr, G.
        • Klefisch F.
        • Danne O.
        • Maske J.
        • Müller C.
        • Störk T.
        • Frei U.
        • Wu A.H.
        Validation of NACB and IFCC guidelines for the use of cardiac markers for early diagnosis and risk assessment in patients with acute coronary syndromes.
        Clin Chim Acta. 2001; 303: 167-179
        • The Joint European Society of Cardiology/American College of Cardiology Committee
        Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction.
        J Am Coll Cardiol. 2000; 36: 959-969
        • Hamm C.W.
        • Bertrand M.
        • Braunwald E.
        Acute coronary syndrome without ST elevation.
        Lancet. 2001; 358: 1533-1538
        • Ryan T.J.
        • Anderson J.L.
        • Antman E.M.
        • Braniff B.A.
        • Brooks N.H.
        • Califf R.M.
        • Hillis L.D.
        • Hiratzka L.F.
        • Rapaport E.
        • Riegel B.J.
        • et al.
        ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction).
        J Am Coll Cardiol. 1996; 28: 1328-1428
        • Braunwald E.
        • Jones R.H.
        • Mark D.B.
        • Brown J.
        • Brown L.
        • Cheitlin M.D.
        • Concannon C.A.
        • Cowan M.
        • Edwards C.
        • Fuster V.
        Diagnosing and managing unstable angina. Agency for Health Care Policy and Research.
        Circulation. 1994; 90: 613-622
        • Braunwald E.
        • Antman E.M.
        • Beasley J.W.
        • Califf R.M.
        • Cheitlin M.D.
        • Hochman J.S.
        • Jones R.H.
        • Kereiakes D.
        • Kupersmith J.
        • Levin T.N.
        • et al.
        ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina).
        J Am Coll Cardiol. 2000; 36: 970-1062
        • Henderson A.R.
        • Bhayana V.
        A modest proposal for the consistent presentation of ROC plots in clinical chemistry.
        Clin Chem. 1995; 41: 1205-1206
        • O’Brien K.D.
        • Pineda C.
        • Chiu W.S.
        • Bowen R.
        • Deeg M.A.
        Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes.
        Circulation. 1999; 99: 2876-2882
        • Houle M.G.
        • Bourgoin S.
        Regulation of phospholipase D by phosphorylation-dependent mechanisms.
        Biochim Biophys Acta. 1999; 1439: 135-149
        • Williger B.T.
        • Ho W.T.
        • Exton J.H.
        Phospholipase D mediates matrix metalloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells.
        J Biol Chem. 1999; 274: 735-738
        • Gomez-Munoz A.
        • Martens J.S.
        • Steinbrecher U.P.
        Stimulation of phospholipase D activity by oxidized LDL in mouse peritoneal macrophages.
        Arterioscler Thromb Vasc Biol. 2000; 20: 135-143
        • Martinson E.A.
        • Scheible S.
        • Greinacher A.
        • Presek P.
        Platelet phospholipase D is activated by protein kinase C via an integrin alpha IIb beta 3-independent mechanism.
        Biochem J. 1995; 310: 623-628
        • Martinson E.A.
        • Scheible S.
        • Marx-Grunwitz A.
        • Presek P.
        Secreted ADP plays a central role in thrombin-induced phospholipase D activation in human platelets.
        Thromb Haemost. 1998; 80: 976-981
        • Yu C.H.
        • Panagia V.
        • Tappia P.S.
        • Liu S.Y.
        • Takeda N.
        • Dhalla N.S.
        Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure.
        Biochim Biophys Acta. 2002; 1584: 65-72
        • Cox D.A.
        • Cohen M.L.
        Relationship between phospholipase D activation and endothelial vasomotor dysfunction in rabbit aorta.
        J Pharmacol Exp Ther. 1997; 283: 305-311
        • Garcia J.G.
        • Fenton J.W.
        • Natarajan V.
        Thrombin stimulation of human endothelial cell phospholipase D activity. Regulation by phospholipase C, protein kinase C, and cyclic adenosine 3′5′-monophosphate.
        Blood. 1992; 79: 2056-2067
        • DaTorre S.D.
        • Creer M.H.
        • Pogwizd S.M.
        • Corr P.B.
        Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart.
        J Mol Cell Cardiol. 1991; 23: 11-22
        • Ambrose J.A.
        Plaque disruption and the acute coronary syndromes of unstable angina and myocardial infarction.
        J Am Coll Cardiol. 1992; 19: 1653-1658
        • Mizuno K.
        • Satomura K.
        • Miyamoto A.
        • Arakawa K.
        • Shibuya T.
        • Arai T.
        • Kurita A.
        • Nakamura H.
        • Ambrose J.A.
        Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes.
        N Engl J Med. 1992; 326: 287-291
        • Mizuno K.
        • Arakawa K.
        • Isojima K.
        • Shibuya T.
        • Satomura K.
        • Kurita A.
        • Nakamura H.
        • Arai T.
        • Kikuchi M.
        Angioscopy, coronary thrombi and acute coronary syndromes.
        Biomed Pharmacother. 1993; 47: 187-191
        • Halenda S.P.
        • Wu H.
        • Jones A.W.
        • Shukla S.D.
        Phospholipase D in platelets and megakaryocytic cells.
        Chem Phys Lipids. 1996; 80: 21-26
        • Davies M.J.
        • Thomas A.C.
        • Knapman P.A.
        • Hangartner J.R.
        Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death.
        Circulation. 1986; 73: 418-427
        • Falk E.
        Unstable angina with fatal outcome.
        Circulation. 1985; 71: 699-708
        • Antman E.M.
        • Cohen M.
        • Bernink P.J.
        • McCabe C.H.
        • Horacek T.
        • Papuchis G.
        • Mautner B.
        • Corbalan R.
        • Radley D.
        • Braunwald E.
        The TIMI risk score for unstable angina/non-ST elevation MI.
        JAMA. 2000; 284: 835-842