Astaxanthin: A Novel Potential Treatment for Oxidative Stress and Inflammation in Cardiovascular Disease

      Oxidative stress and inflammation are implicated in several different manifestations of cardiovascular disease (CVD). They are generated, in part, from the overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that activate transcriptional messengers, such as nuclear factor–κB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Despite this connection between oxidative stress and CVD, there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, “upstream” approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. However, human clinical trials with several different well-known agents, such as vitamin E and β-carotene, have been disappointing. Does this mean antioxidants as a class are ineffective, or rather that the “right” compound(s) have yet to be found, their mechanisms of action understood, and their appropriate targeting and dosages determined? A large class of potent naturally-occurring antioxidants exploited by nature—the oxygenated carotenoids (xanthophylls)—have demonstrated utility in their natural form but have eluded development as successful targeted therapeutic agents up to the present time. This article characterizes the mechanism by which this novel group of antioxidants function and reviews their preclinical development. Results from multiple species support the antioxidant/anti-inflammatory properties of the prototype compound, astaxanthin, establishing it as an appropriate candidate for development as a therapeutic agent for cardiovascular oxidative stress and inflammation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Fuster V.
        • Moreno P.R.
        • Fayad Z.A.
        • Corti R.
        • Badimon J.J.
        Atherothrombosis and high-risk plaque.
        J Am Coll Cardiol. 2005; 46: 937-954
        • Tedgui A.
        • Mallat Z.
        Cytokines in atherosclerosis: pathogenic and regulatory pathways.
        Physiol Rev. 2006; 86: 515-581
        • Geisler T.
        • Bhatt D.L.
        The role of inflammation in atherothrombosis: current and future strategies of medical treatment.
        Med Sci Monit. 2004; 10: RA308-RA316
        • Valko M.
        • Leibfritz D.
        • Moncol J.
        • Cronin M.T.
        • Mazur M.
        • Telser J.
        Free radicals and antioxidants in normal physiological functions and human disease.
        Int J Biochem Cell Biol. 2007; 39: 44-84
        • Davidson S.M.
        • Duchen M.R.
        Endothelial mitochondria: contributing to vascular function and disease.
        Circ Res. 2007; 100: 1128-1141
        • Muller G.
        • Goettsch C.
        • Morawietz H.
        Oxidative stress and endothelial dysfunction.
        Hamostaseologie. 2007; 27: 5-12
        • Schulz E.
        • Anter E.
        • Keaney Jr, J.F.
        Oxidative stress, antioxidants, and endothelial function.
        Curr Med Chem. 2004; 11: 1093-1104
        • Tak P.P.
        • Firestein G.S.
        NF-κB: a key role in inflammatory diseases.
        J Clin Invest. 2001; 107: 7-11
        • Li Q.
        • Verma I.M.
        NF-κB regulation in the immune system.
        Nat Rev Immunol. 2002; 2: 725-734
        • Cyrus T.
        • Sung S.
        • Zhao L.
        • Funk C.D.
        • Tang S.
        • Pratico D.
        Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice.
        Circulation. 2002; 106: 1282-1287
        • Cominacini L.
        • Anselmi M.
        • Garbin U.
        • Fratta Pasini A.
        • Stranieri C.
        • Fusaro M.
        • Nava C.
        • Agostoni P.
        • Keta D.
        • Zardini P.
        • Sawamura T.
        • Lo Cascio V.
        Enhanced plasma levels of oxidized low-density lipoprotein increase circulating nuclear factor-κB activation in patients with unstable angina.
        J Am Coll Cardiol. 2005; 46: 799-806
        • Bertram J.S.
        Cellular communication via gap junctions.
        Sci Med (Phila). 2000; 8: 18-27
        • Chadjichristos C.E.
        • Derouette J.P.
        • Kwak B.R.
        Connexins in atherosclerosis.
        Adv Cardiol. 2006; 42: 255-267
        • Dhein S.
        Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction.
        Adv Cardiol. 2006; 42: 198-212
        • Severs N.J.
        • Dupont E.
        • Thomas N.
        • Kaba R.
        • Rothery S.
        • Jain R.
        • Sharpey K.
        • Fry C.H.
        Alterations in cardiac connexin expression in cardiomyopathies.
        Adv Cardiol. 2006; 42: 228-242
        • Murray K.T.
        • Mace L.C.
        • Yang Z.
        Nonantiarrhythmic drug therapy for atrial fibrillation.
        Heart Rhythm. 2007; 4: S88-S90
        • Dhein S.
        Role of connexins in atrial fibrillation.
        Adv Cardiol. 2006; 42: 161-174
        • Rodriguez-Sinovas A.
        • Boengler K.
        • Cabestrero A.
        • Gres P.
        • Morente M.
        • Ruiz-Meana M.
        • Konietzka I.
        • Miro E.
        • Totzeck A.
        • Heusch G.
        • Schulz R.
        • Garcia-Dorado D.
        Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection.
        Circ Res. 2006; 99: 93-101
        • Boengler K.
        • Konietzka I.
        • Buechert A.
        • Heinen Y.
        • Garcia-Dorado D.
        • Heusch G.
        • Schulz R.
        Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43.
        Am J Physiol Heart Circ Physiol. 2007; 292: H1764-H1769
        • Hix L.M.
        • Lockwood S.F.
        • Bertram J.S.
        Upregulation of connexin 43 protein expression and increased gap junctional communication by water soluble disodium disuccinate astaxanthin derivatives.
        Cancer Lett. 2004; 211: 25-37
        • Rodrigo R.
        • Guichard C.
        • Charles R.
        Clinical pharmacology and therapeutic use of antioxidant vitamins.
        Fundam Clin Pharmacol. 2007; 21: 111-127
        • McNulty H.P.
        • Byun J.
        • Lockwood S.F.
        • Jacob R.F.
        • Mason R.P.
        Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis.
        Biochim Biophys Acta. 2007; 1768: 167-174
        • May J.M.
        Is ascorbic acid an antioxidant for the plasma membrane?.
        FASEB J. 1999; 13: 995-1006
        • Hussein G.
        • Sankawa U.
        • Goto H.
        • Matsumoto K.
        • Watanabe H.
        Astaxanthin, a carotenoid with potential in human health and nutrition.
        J Nat Prod. 2006; 69: 443-449
        • Santocono M.
        • Zurria M.
        • Berrettini M.
        • Fedeli D.
        • Falcioni G.
        Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells.
        J Photochem Photobiol B. 2006; 85: 205-215
        • Lockwood S.F.
        • Gross G.J.
        Disodium disuccinate astaxanthin (Cardax): antioxidant and antiinflammatory cardioprotection.
        Cardiovasc Drug Rev. 2005; 23: 199-216
        • Guerin M.
        • Huntley M.E.
        • Olaizola M.
        Haematococcus astaxanthin: applications for human health and nutrition.
        Trends Biotechnol. 2003; 21: 210-216
        • Wang X.D.
        • Krinsky N.I.
        • Marini R.P.
        • Tang G.
        • Yu J.
        • Hurley R.
        • Fox J.G.
        • Russell R.M.
        Intestinal uptake and lymphatic absorption of beta-carotene in ferrets: a model for human beta-carotene metabolism.
        Am J Physiol. 1992; 263: G480-G486
      1. Astaxanthin as a pigmenter in salmon feed.
        Chemicals HVF. 1987; (Hoffman-La Roche Inc.)
        • Spiller G.A.
        • Dewell A.
        Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: a randomized clinical trial.
        J Med Food. 2003; 6: 51-56
        • Félétou M.
        • Vanhoutte P.M.
        Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture).
        Am J Physiol Heart Circ Physiol. 2006; 291: H985-H1002
        • Nicholls S.J.
        • Zheng L.
        • Hazen S.L.
        Formation of dysfunctional high-density lipoprotein by myeloperoxidase.
        Trends Cardiovasc Med. 2005; 15: 212-219
        • Levitsky S.
        Protecting the myocardial cell during coronary revascularization: the William WL Glenn Lecture.
        Circulation. 2006; 114: I339-I343
        • Van Wagoner D.R.
        Recent insights into the pathophysiology of atrial fibrillation.
        Semin Thorac Cardiovasc Surg. 2007; 19: 9-15
        • Dzau V.J.
        • Antman E.M.
        • Black H.R.
        • Hayes D.L.
        • Manson J.E.
        • Plutzky J.
        • Popma J.J.
        • Stevenson W.
        The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes. Part I: pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease).
        Circulation. 2006; 114: 2850-2870
        • Iwamoto T.
        • Hosoda K.
        • Hirano R.
        • Kurata H.
        • Matsumoto A.
        • Miki W.
        • Kamiyama M.
        • Itakura H.
        • Yamamoto S.
        • Kondo K.
        Inhibition of low-density lipoprotein oxidation by astaxanthin.
        J Atheroscler Thromb. 2000; 7: 216-222
        • Mason R.P.
        • Walter M.F.
        • McNulty H.P.
        • Lockwood S.F.
        • Byun J.
        • Day C.A.
        • Jacob R.F.
        Rofecoxib increases susceptibility of human LDL and membrane lipids to oxidative damage: a mechanism of cardiotoxicity.
        J Cardiovasc Pharmacol. 2006; 47: S7-S14
        • Gross G.J.
        • Auchampach J.A.
        Reperfusion injury: does it exist?.
        J Mol Cell Cardiol. 2007; 42: 12-18
        • Wang Q.D.
        • Pernow J.
        • Sjoquist P.O.
        • Ryden L.
        Pharmacological possibilities for protection against myocardial reperfusion injury.
        Cardiovasc Res. 2002; 55: 25-37
        • Gross G.J.
        • Lockwood S.F.
        Acute and chronic administration of disodium disuccinate astaxanthin (Cardax) produces marked cardioprotection in dog hearts.
        Mol Cell Biochem. 2005; 272: 221-227
        • Gross G.J.
        • Lockwood S.F.
        Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (Cardax).
        Life Sci. 2004; 75: 215-224
        • Gross G.J.
        • Hazen S.L.
        • Lockwood S.F.
        Seven day oral supplementation with Cardax (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats.
        Mol Cell Biochem. 2006; 283: 23-30
        • Krotz F.
        • Sohn H.Y.
        • Pohl U.
        Reactive oxygen species: players in the platelet game.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1988-1996
      2. Lauver DA, Driscoll EM, Lucchesi BR. Disodium disuccinate astaxanthin prevents carotid rethrombosis and ex-vivo platelet activation. Pharmacology (in press).

        • Hall G.
        • Hasday J.D.
        • Rogers T.B.
        Regulating the regulator: NF-κB signaling in heart.
        J Mol Cell Cardiol. 2006; 41: 580-591
        • Higuchi Y.
        • Otsu K.
        • Nishida K.
        • Hirotani S.
        • Nakayama H.
        • Yamaguchi O.
        • Matsumura Y.
        • Ueno H.
        • Tada M.
        • Hori M.
        Involvement of reactive oxygen species-mediated NF-κB activation in TNF-α-induced cardiomyocyte hypertrophy.
        J Mol Cell Cardiol. 2002; 34: 233-240
        • Molkentin J.D.
        • Dorn II, I.G.
        Cytoplasmic signaling pathways that regulate cardiac hypertrophy.
        Annu Rev Physiol. 2001; 63: 391-426
        • Matsumori A.
        • Sasayama S.
        The role of inflammatory mediators in the failing heart: immunomodulation of cytokines in experimental models of heart failure.
        Heart Fail Rev. 2001; 6: 129-136
        • Cook S.A.
        • Novikov M.S.
        • Ahn Y.
        • Matsui T.
        • Rosenzweig A.
        A20 is dynamically regulated in the heart and inhibits the hypertrophic response.
        Circulation. 2003; 108: 664-667
        • Lee S.J.
        • Bai S.K.
        • Lee K.S.
        • Namkoong S.
        • Na H.J.
        • Ha K.S.
        • Han J.A.
        • Yim S.V.
        • Chang K.
        • Kwon Y.G.
        • Lee S.K.
        • Kim Y.M.
        Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(κ)B kinase-dependent NF-κB activation.
        Mol Cells. 2003; 16: 97-105
        • Ohgami K.
        • Shiratori K.
        • Kotake S.
        • Nishida T.
        • Mizuki N.
        • Yazawa K.
        • Ohno S.
        Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo.
        Invest Ophthalmol Vis Sci. 2003; 44: 2694-2701